凝结加热和地表通量对华南中尺度对流系统(MCS)发生发展的影响
EFFECTS OF CONDENSATION HEATING AND SURFACE FLUXES ON THE DEVELOPMENT OF A SOUTH CHINA MESOSCALE CONVECTIVE SYSTEM(MCS)
-
摘要: 通过有无凝结加热和地表通量影响的数值模拟对比研究, 分析了非绝热过程对一次华南暴雨MCS发生发展过程的影响。结果表明:(1)凝结加热对MCS的降水影响很大, 在MCS发展的各个时期, 如不考虑凝结加热, MCS的降水强度很快减弱, 无法继续发展。(2)凝结加热在MCS涡旋的形成期最为重要, 在涡旋形成之后, 影响相对减弱。(3)凝结加热通过对MCS发展过程的影响从而也影响了MCS环境场中尺度低空急流、高层辐散等中尺度结构特征的形成。(4)地表感热、潜热通量等边界层非绝热过程对MCS的形成也有重要影响;在暴雨MCS发生前期, 地表非绝热过程造成气压下降, 导致华南南部来自海洋的偏南风加大, 辐合加强, 从而使低层的湿度增大, 气层变得更加不稳定, 有利于对流的启动。
-
关键词:
- 凝结加热 /
- 地表通量 /
- 中尺度对流系统(MCS) /
- 华南暴雨 /
- 数值模拟
Abstract: A sensitive numerical simulation study is carried out to investigate the effects of condensation heating and surface fluxes on the development of a South China MCS that occurred during 23~24 May 1998. Results reveal that: (1) Condensation heating plays an important role in the development of MCS. In every different stage, without condensation heating, MCS precipitation is significantly reduced, and quickly dissipates; (2) Condensation heating demonstrates most importantly during the early development stages of MCS vortex, as the vortex develops stronger, the condensation heating effects reduces; (3) By affecting the MCS development processes, condensation heating also influences the formation of MCS mesoscale environment structure features such as low-level jet (mLLJ), upper-level divergence; (4) By changing the antecedent environmental circulation, the surface fluxes also play an important role in the development of MCS. Because of the surface heating, pressure declines over the heavy rainfall and MCS happening regions, which results in the intensification of southerly flows from the ocean along the South China coastline areas, and leads to the enhancement of horizontal convergence and increase of vapor amount in the lower layer. All these make the atmosphere becoming more unstable and more favorable for the convection. -
[1] 仪清菊,徐祥德.不同尺度云团系统上下游的传播与1998年长江流域大暴雨[J].气候与环境研究,2001,6(2):139-145. [2] 薛纪善.1994年华南夏季特大暴雨研究[M].北京:气象出版社,1999.68-69 [3] 王立琨,郑永光,王洪庆,等.华南暴雨试验过程的环境场和云团特征的初步分析[J].气象学报,2001,59(2):115-119. [4] CHEN S J, KUO Y H, WANG W, et al. A modeling case study of heavy rainstorms along the Mei-Yu front[J]. Mon Wea Rev,1998, 126(9): 2330-2351. [5] MENG Weiguang, WANG Anyu, LI Jiangnan, et al. Numerical simulation of a mesoscale convective system(MCS) during the first rainy season over South China[J]. Acta Meteor Sinica, 17(1): 79-92. [6] 袁金南,万齐林.岛屿地形和对流凝结潜热对登陆台风"黄蜂"影响的数值研究[J].热带气象学报,2003,19(1):81-87. [7] 薛洪斌,钟中,薛峰.对流凝结加热的垂直分布与低纬大气的30~60天低频振荡[J].热带气象学报,2003,19(4):397-404. [8] 孙建华,赵思雄.华南"94·6"特大暴雨的中尺度对流系统及其环境场研究Ⅱ--物理过程、环境场以及地形对中尺度对流系统的作用[J].大气科学,2002,26:633-646. [9] PERKEY D J, MADDOX R A. A numerical investigation of a mesoscale convective system[J]. Mon Wea Rev, 1985, 113(4):553-566. [10] ZHANG D L, FRITSCH J M. Numerical simulation of meso-β scale structure and evolution of 1977 Johnstown flood Ⅱ:Inertially stable warm-core vortex and the mesoscale convective complex[J]. J Atmos Sci, 1987, 44(18): 2593-2612. [11] ZHANG D L, GAO K, PARSONS D B. Numerical simulation of an intense squall line during 10-11 June 1985 PRE-STORM Ⅰ: Model verification[J]. Mon Wea Rev, 1989, 117(5): 960-994. [12] ROGERS R F, FRITSCH J M. Surface cyclogenesis from convectively driven amplification of midlevel mesoscale convective vortices[J]. Mon Wea Rev, 2001, 129(4): 605-636. [13] KESSLER E.雷暴形态学和动力学[M].北京:气象出版社,1991.45-46. -

计量
- 文章访问数: 1096
- HTML全文浏览量: 0
- PDF下载量: 1207
- 被引次数: 0