ISSN 1004-4965

CN 44-1326/P

用微信扫描二维码

分享至好友和朋友圈

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

关于集合Kalman滤波的理论和方法的发展

刘成思 薛纪善

刘成思, 薛纪善. 关于集合Kalman滤波的理论和方法的发展[J]. 热带气象学报, 2005, (6): 628-633.
引用本文: 刘成思, 薛纪善. 关于集合Kalman滤波的理论和方法的发展[J]. 热带气象学报, 2005, (6): 628-633.
LIU Cheng-si, XUE Ji-shan. THE ENSEMBLE KALMAN FILTER THEORY AND METHOD DEVELOPMENT[J]. Journal of Tropical Meteorology, 2005, (6): 628-633.
Citation: LIU Cheng-si, XUE Ji-shan. THE ENSEMBLE KALMAN FILTER THEORY AND METHOD DEVELOPMENT[J]. Journal of Tropical Meteorology, 2005, (6): 628-633.

关于集合Kalman滤波的理论和方法的发展

基金项目: 国家"十五"重点科技攻关项目《中国气象数值预报系统技术创新研究》(2001BA607B02);国家自然科学资金重点项目《中国强降水天气数值预报的研究》(40233036)联合资助

THE ENSEMBLE KALMAN FILTER THEORY AND METHOD DEVELOPMENT

  • 摘要: 随着同化方法的不断的发展,一种新的资料同化方法——集合Kalman滤波正在兴起。简单地回顾了同化方法的发展,探讨了集合Kalman滤波的特点。同时,还介绍了集合Kalman滤波发展的过程以及指出目前所面临的问题和未来的发展趋势。

     

  • [1] Panel on model-assimilated Data sets (D.R. Johnson, J.T. Bates, G.P. Brasseur, M.Ghil, A.Hollingsworth, R.L.Jenne ,K.Miyakoda, E. Rasmusson, E.S.Sarachik, and T.T.Warner).1991:Four-Dimensional Model Assimilation of Data: A Strategyfor the Earth System Sciences, National Academy Press, Washington, D.C.,78 pp[2] PANOFSKY H. Objective weather-map analysis[J]. J Appl Meteor, 1949, 6:386-392.[3] CRESSMAN. An operational objective analysis system[J]. Mon Wea Rev, 1959, 87(10): 367-374.[4] GANDIN L. Objective analysis of meteorological fields (Leningrad: Gridromet). English translation(Jerusalem: IsraelProblem for Scientific Translation), 1965.[5] JONES, ROBERT W. On Improving Initial Data for Numerical Forecasts of Hurricane Trajectories by the Steering Method[J]. Journal of Applied Meteorology, 1964, 3(3): 277–284.[6] NAGLE, ROLAND E, CLARK, et al. Formulation and testing of a program for the objective assembly of meteorologicalsatellite cloud observations[J]. Monthly Weather Review, 1967, 95(4): 171–187.[7] DALEY. Atmospheric data analysis,Cambridge Univ. Press, 1991.[8] EPSTEIN E S. Stochastic dynamic prediction[J]. Tellus Ser A. 1969, 21(4): 739-759.[9] GEIR EVENSEN. Sequential data assimilation with a nonlinear quasi-geostrophic model using Montre Carlo methods toforecast error statistics[J]. J Geophys Res, 1994, 99(10): 143-162.[10] 高山红, 吴增茂. Kalman 滤波在气象数据同化中的发展与应用[J]. 地球科学进展, 2000, 5(4): 571-575.[11] HMAILL T M. Ensemble-Based Data Assimilation, Workshop on Predictability ECMWF , 2002.8.83-105.[12] WHITAKER J S, HAMILL T M. Ensemble Data Assimilation without perturbed observations[J]. Mon Wea Rev, 130(7):1913–1924.[13] HOUTEKAMER P L, MITCHELL H L. Data assimilation using an ensemble Kalman filter technique[J]. Mon Wea Rev,1998, 126(3): 796-811.[14] MITCHELL H L, HOUTEKAMER P L, PELLERIN G. Ensemble size, and model-error representation in an EnsembleKalman Filter[J]. Mon Wea Rev, 2002, 130(11): 2791-2808.[15] MITCHELL H L, HOUTEKAMER P L. An adaptive ensemble Kalman filter[J]. Mon Wea Rev, 2000, 128(2): 426-433.[16] HOUTEKAMER P L, HERSCHEL L, MITCHELL. A Sequential Ensemble Kalman Filter for Atmospheric Data Assimi-lation[J]. Mon Wea Rev, 2001, 129(1): 123-137.[17] LORENC A. (Met Office). Relative merits of 4DVar and Ensemble methods. ECMWF Seminar on Recent developmentsin data assimilation for atmosphere and ocean, 8 to 12 September 2003.[18] DERBER J. (NOAA). Flow dependent Jb in a grid-point 3D-Var Ensemble data assimilation. Seminar on Recent develop-ments in data assimilation for atmosphere and ocean. 8 to 12 September 2003.[19] KALNAY E. Atmospheric modeling, data assimilation and predictability. Cambridge university press, 2003. 181[20] HAMILL T M, MULLEN S L, SNYDER C, et al. Baumhefner D. P. Ensemble forecasting in the short to medium range:Report from a workshop[J]. Bull Amer Meteor Soc, 2000, 81(11): 2653–2664.[21] NOAA-CIRES Climate Diagnostics Center. CDC’s 2001 Science Review[D].[22] HAMILL T M, SNYDER C. Using improved background error covariances from an ensemble Kalman filter for adaptiveobservations[J]. Monthly Weather Review, 2002, 130(6): 1552-1572.[23] BISHOP C H, ETHERTON B J, MAJUMDAR S J. Adaptive sampling with the ensemble transform Kalman filter. Part I:Theoretical aspects[J]. Monthly Weather Review, 2001, 129(3): 420--436.
  • 加载中
计量
  • 文章访问数:  1299
  • HTML全文浏览量:  8
  • PDF下载量:  2962
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-02-17
  • 修回日期:  2005-03-28

目录

    /

    返回文章
    返回