支持向量机(SVM)及其在场预测中的应用
APPLICATIONS OF SUPPORT VECTOR MACHINES IN THE FIELDS FORECASTING
-
摘要: 介绍一种新的非线性回归分析方法——SVM回归。利用EOF能分解数据场和SVM回归分析可建立因子与预报量非线性关系的优势,设计预报方案:(1)将因子场和预报场分别用方差标准化、EOF场展开,提取两场时间系数;(2)用SVM回归分析实现因子场时间系数对预报场时间系数非线性预测;(3)由预测的预报场时间系数与对应空间函数反演原场。用交叉检验的方法,对1960~2003年1月热带海表温度场预报汛期(6~8月)华中区域降水场进行试验。SVM回归44年独立预报平均技巧评分10.4%,较随机预报具有明显的技巧水平,优于经典回归。Abstract: A new nonlinear regression,SVM regression,was introduced.With the superiority of both of EOF(Empirical orthogonal functions) separating fields and nonlinear SVM regression forecasting a program is projected:(1) factor fields and predicted fields are standardized,then EOF,and the time coefficients of two fields are extracted respectively;(2) with SVM regression the time coefficients of predicted fields are estimated by those of factor fields;(3) the original predicted fields are recovered by linear combination of the time coefficients and the eigenvectors.Summer rainfall over central China was predicted with January tropical sea surface temperature,and the cross-validations over 44 years were tested.The score is 10.4%,and this program is obviously superior in forecasting skills to both of random and classical regression.
-
Key words:
- support vector machines /
- regression /
- estimate of fields
-
[1] 张礼平,柯怡明,胡江林,等.SVD方法在场分析和预测中的应用[J].热带气象学报,2002,18(3):237-244. [2] 张礼平,柯怡明,王康康.SVD方法在场的定量预测中的应用[J].热带气象学报,2004,20(4):383-390. [3] 张礼平,胡江林.人工神经网络在短期气候预测中的应用[J].气象科学,2004,24(4):455-459. [4] VAPNIK V N.Statistical learning theory[M].New York:John Wiley & Sons,Inc,1998:375-570. [5] VAPNIK V N.The nature of statistical learning theory[M].New York:Springer Verlag,2000:123-266. [6] COURANT R,HILBERT D.Method of mathematical physics[M].New York:Volume I,Springer Verlag,1953:96-110. [7] 陈永义,余小鼎,高学浩,等.处理非线性分类和回归问题的一种新方法Ⅰ--支持向量机方法简介[J].应用气象学报,2004,15(3):345-354. [8] 张礼平."NLM"方法在集成预报中的应用[J].气象科学,1991,11(2):214-218.
点击查看大图
计量
- 文章访问数: 984
- HTML全文浏览量: 2
- PDF下载量: 3926
- 被引次数: 0