中纬度突发性暴雨的可能先兆特征
POSSIBLE PREMONITORY CHARACTERS OF DOPPLER RADAR PRODUCT AND CLOUD CHART FOR THE MID-LATITUDE SUDDEN HEAVY RAIN
-
摘要: 通过对湿位涡(MPV)不守恒过程出现条件的讨论,理论上证明了:在中纬度突发性暴雨产生前,①必定存在着深对流高度范围内∂θ*/∂z迅速趋向于零的过程。②斜压向量沿广义位温梯度有一分量。③接近饱和的不饱和层足够厚,达到深对流高度。④处于含有大量水汽和液态水的云团和云块附近。1999年合肥2次突发性暴雨确实都有体现上述4个必要条件的2种共同特征现象。⑤在暴雨生成之前,在合肥上空存在着深厚的双层干区(在多普勒雷达VWP图上表现为深对流高度范围内的两层连续无资料区),首先,随着上层干区顶部的湿冷空气开始下滑,上层干区开始从上到下消失,接着,当下滑空气停止下滑而开始上升时,下层的干区开始消失,最后在两层干区完全消失时,带来突发性暴雨的中尺度对流系统就突然出现。⑥同时在云图上,南下冷锋云带在逼近合肥市分裂成两部分,以至在断裂处几乎没有云和雾,而在周围则存在着含有大量液态水和水汽的两块云团。而在冷锋云带通过合肥后,带来突发性暴雨的中尺度对流系统就在几乎没有云和雾的断裂处爆发。Abstract: By discussing the occurrence condition of non-conservation process of moist potential vorticity (MPV) according as the basal characteristic of the sudden heavy rain (SHR) in mid-latitude, it is proved theoretically as follows: The SHR in mid-latitude is possible only in the place where, just before its occurrence, (1) there must be a process that ∂θ*/∂z within a deep convective altitude is enough and prompt approaching zero, and (2) under the condition that the baroclinic vectors have a component along (against) the direction of broad sense potential temperature gradients, (3) the atmosphere within a deep convective altitude must be in the neighborhood of saturation, but it must not be in saturation state, so there must be litter cloud or fog, and moreover, (4) the place must be in the neighborhood of cloud clusters or a cloud band containing a lot of cloud water and water vapor. By the analysis of the Doppler radar and cloud chart data related to two courses of the SHR in Hefei city collected in 1999, it is known that: Both courses have the following common possible premonitory characters embodying the four necessary conditions above: (5) There have been two deep layers of dry area in Hefei, which, on the VWP chart, are shown as two layers of continuous no-data areas within a deep convective altitude. Firstly, the upper layer disappears from the top down because the moist and cold air on top of the upper layer dry area begins to slide down. Then the lower layer begins to disappear when the air stops sliding down and begins to lift. Finally, after the two layers of the dry areas disappear entirely, a MCS (meso-scale convection System) bringing the SHR comes into being. It is a possible premonitory character. (6) In the same time, on the cloud chart, if a coming cloud band of cold front breaks down into two parts in Hefei so that there is litter cloud or fog in the break of the cloud band while there are two cloud clusters containing a lot of cloud water and water vapor around the break of the cloud band, it is in the break of the cloud band with little cloud and fog and near and between two cloud clusters containing a lot of cloud water and water vapor that the MCS comes into view after the cold front cloud band passes by. It is another possible premonitory character.
-
[1] 谢义炳.中国夏半年几种降水天气系统的分析研究[J].气象学报,1956,27(1):1-23. [2] 陶诗言.中国之暴雨[J].北京:科学出版社,1980:1-225. [3] 余志豪.陆汉城.梅雨锋暴雨的中尺度雨带和雨峰团[J].中国科学(B辑),1988,1002-1010. [4] 丁一汇.暴雨和中尺度气象问题[J].气象学报,1994,52(3):275-278. [5] 斯公望.东亚梅雨锋暴雨研究进展[J].地球科学进展,1994,9(2):11-17. [6] 高守亭,陶诗言.高空急流加速与低层锋生[J].大气科学,1991,15(2):11-22. [7] 朱民,陆汉城,余志豪.梅雨锋α中尺度气旋发展中的正反馈机制研究[J].大气科学,1998,22(5):763-770. [8] 徐亚梅,高坤.98年7月22日长江中游中β低涡的数值模拟及初步分析[J].气象学报,2000,60(1):85-95. [9] 翟国庆.对流层上层青藏高压东侧偏北气流在梅雨暴雨中的作用[J].气象学报,1998,56(1):68-76. [10] 赵宇,吴增茂,刘诗军,等.由变性台风环流引发的山东特大暴雨天气的位涡场分析[J].热带气象学报,2005,21(1):33-43. [11] 何敏,龚振淞,许力.热带环流系统异常对2003年淮河持续性暴雨的影响[J].热带气象学报,2005,21(3):323-302. [12] 施望芝,郭施,金琪,等.2002年湖北两场连续暴雨综合诊断分析[J].热带气象学报,2004,20(5):609-616. [13] 杨静,王鹏云,李兴荣."99.6"梅雨锋暴雨云和降水物理过程的中尺度数值模拟[J].热带气象学报,2003,19(2):203-212. [14] 刘淑媛,郑永光,陶祖钰.利用风廓线雷达资料分析低空急流的脉动与暴雨关系[J].热带气象学报,2003,19(3):285-290. [15] 杨引明,郑永光,陶祖钰.上海热带低压特大暴雨分析[J].热带气象学报,2003,19(4):413-421. [16] 李江南,王安宇,杨兆礼,等.台风暴雨的研究进展[J].热带气象学报,2003,19(增刊):152-159. [17] 施望芝,熊秋芬,陈创买.武汉地区"98.7"连续性暴雨的卫星水汽图像分析[J].热带气象学报,2002,18(1):91-96. [18] NINOMIYA K.Moisture balance over China Sea during the summer monsoon in 1991 in relation to the intense rainfalls over China[J].Journal of the Meteorological Society of Japan,1999,77:737-751. [19] SHIBAGAKI Y,YAMANAKA M D,HASHIGUCHI H,et al.Hierarchical structures of vertical vorticity variations and precipitating clouds near the baiu frontal cyclone center observed by the MU and meteorological radars[J].Journal of the Meteorological Society of Japan,1997,75:569-596. [20] ERTEL H Ein neuer hydrodynamischer wirbelsatz[J].Meteorolog Zeitchr Braunschweig,1942,6:277-281. [21] HOSKINS B J,MCINTYRE M E,ROBERTSON R W.On the use and significance of isentropic potential vorticity amps[J].Quarterly Journal of the Royal Meteorological Society,1985,111:877-946. [22] ROBINSON W A.Analysis of LIMS data by potential vorticity inversion[J].Journal of the Atmospheric Sciences,1988,45(16):2319-2342. [23] HAYNES P H,MCINTYRE M E.On the conservation and impermeability theorems for potential vorticity[J].Journal of the Atmospheric Sciences,1990,47(16):2021-2031. [24] DAVIS C A.A potential vorticity diagnosis of the importance of initial structure and condensatioanl heating in observed extratropical cyclogenesis[J].Monthly Weather Review,1992,120(11):2409-2428. [25] CAO Zuohao,CHO Han-ru.Generation of moist potential vorticity in extratropical cyclones[J].Journal of the Atmospheric Sciences,1995,52(18):3263-3281. [26] HUO Z,ZHANG D L,GYAKUM J R.Interaction of potential vorticity anomalies in extratropical cyclogenesis Ⅰ:static piecewise inversion[J].Monthly Weather Review,1999,127(11):2546-2561. [27] 吴国雄,蔡雅萍,唐晓箐.湿位涡和倾斜涡度发展[J].气象学报,1995,53(4):387-405. [28] 吴国雄,刘还珠.全型垂直涡度倾向方程和倾斜涡度发展[J].气象学报,1999,57(1):1-15. [29] 吴国雄,刘屹岷.热力适应、过流和副高Ⅰ:热力适应和过流[J].大气科学,2000,24(4):433-446. [30] SCHUBERT W H,SCOTT A H,MATTHEW Garcia,et al.Potential Vorticity in a Moist Atmosphere[J].Journal of the Atmospheric Sciences,2001,58(21):3148-3157. [31] GAO Shouting,LEI Ting,ZHOU Yushu.Moist potential vorticity anomaly with heat and mass forcings in torrential rain system[J].Chinese Physics Letters,2002,19:878-880. [32] FRITSCH J M,MURPHY J D,KAIN J S.Warm core vortex amplification over land[J].Journal of the Atmospheric Sciences,1994,51(13):1780-1807. [33] DAVIS C A,WEISMAN M L.Balanced dynamics of mesoscale vortices in simulated convective systems[J].Journal of the Atmospheric Sciences,1994,51(14):2005-2030. [34] SKAMAROCK W C,WEISMAN M L,KLEMP J B.Three-dimensional evolution of simulatede long-lived squall lines[J].Journal of the Atmospheric Sciences,1994,51(17):2563-2584. [35] GRAY M E B,SHUTTS G J,CRAIG G C.The role of mass transfer in describing the dynamics of mesoscale convective system[J].Quarterly Journal of the Royal Meteorological Society,1998,124:1183-1207. [36] RAYMOND D J,JIANG H.A theory for long-lived mesoscale convective systems[J].Journal of the Atmospheric Sciences,1990,47(24):3067-3077. [37] SHUTTS G J,GRAY M E B.A numerical modelling study of the geostrophic adjustment process following deep convection[J].Quarterly Journal of the Royal Meteorological Society,1994,120:1145-1178. [38] FULTON S R,SCHUBERT W H,HAUSMAN S A.Dynamical adjustment of mesoscale convective anvils[J].Monthly Weather Review,1995,123(11):3215-3226. [39] 叶笃正,李麦村.大气运动中的适应问题[M].北京:科学出版社,1965:1-126. [40] 王兴荣.环流调整机制的动力学剖析[J].高原气象,1984,3(1):27-35. [41] 王兴荣,汪钟兴,石春娥.关于大气运动湿位涡不守恒问题[J].气象科学,1998,13(2):136-141. [42] 王兴荣.从不稳定能量触发机制探讨突发性灾害[J].自然灾害学报,1998,7(1):11-15. [43] 王兴荣,吴可军,陈晓平,等.突发性灾害天气特征及发生条件的动力学剖析[J].南京气象学院学报,1999,22(4):711-715. [44] 王兴荣.从"湿位涡不守恒"来研究突发性灾害性天气,特大自然灾害预测的新途径和新方法[C]//香山科学会议第133次学术讨论会文集.北京:中国科学技术出版社,2002:128-131. [45] WANG Xingrong (王兴荣),YAO Yeqing,YU Shang,et al.Analyses of errors in medium-term numerical forecast products for subtropical high 1998[J].Journal of Tropical Meteorology (英文版),2003,9(1):105-112. [46] 王兴荣,魏鸣,胡雯,等.从湿位涡守恒的相对性看不同尺度天气系统的转化[C]//第四次全国暴雨学术研讨会论文摘要文集.中国气象学会和南京大学大气科学系,2002:69-74. [47] 王兴荣,吴可军.湿空气动力学若干问题的探讨[J].气象科学,1995,15(1):9-17. [48] 王兴荣,石春娥,汪钟兴.非静力平衡条件下的垂直坐标变换及湿空气动力学方程组[J].大气科学,1997,21(5):557-563. [49] 王兴荣,吴可军,石春娥.凝结几率函数的引进和非均匀饱和湿空气动力学方程组[J].热带气象学报,1999,15(1):64-70.
点击查看大图
计量
- 文章访问数: 1069
- HTML全文浏览量: 0
- PDF下载量: 1112
- 被引次数: 0