正则化方法在风海流Ekman模型资料同化中的应用
VARIATIONAL DATA ASSIMILATION OF WIND-DRIVEN CURRENT MODEL
-
摘要: 针对修正的风海流Ekman模型,采用变分同化技术结合反问题的正则化技巧,对模式的初始条件、边界条件和模式参数进行最优调整,使模式解与观测场能较好地符合。在对模式参数的估计过程中,引进正则化思想,在目标泛函中增加稳定泛函,从而克服在调整模式参数时造成的不适定。并通过数值试验进一步肯定正则化理论在资料同化中的作用。Abstract: The regularization method of inverse problem is used in combination with the variational data assimilation method to adjust the model initial/boundary conditions and parameters so that the analyzed model can agree with the observation. The computational instability will appear as a result of ill-posed inverse problem during variatioanal data assimilation and optimal model parameter estimation.The regularization ideas are introduced by adding a stable function to the cost function. The ill-posed variational assimilation during optimal adjustment of model parameters in some cases are corrected with satisfactory results. Ideal experiments are also conducted to verify the effect of the regularization method on variational data assimilation.
-
[1] 郭炳荣,江剑民,丑纪范,等.气候系统的非线性特征及其预测理论[M].北京:气象出版社,1996:157-163. [2] 郜吉东,丑纪范.数值天气预报中两类反问题及一种数值解法-理想试验[J].气象学报,1994,52(2):129-137. [3] SMEDSTAD O M,BRIN O J J.Variational data assimilation and parameter estimation in an equatorial Pacific Ocean model[J].Progress in Oceanography,1991,26(2):171-241. [4] YU L,BRIN O J J.Variational Estimation of the Wind Stress Drag Coefficient and the Oceanic Eddy Viscosity Profile[J].Journal of physical Oceangraphy,1991,21(4):709-719. [5] LARDER R W.Optimal control of an open boundary conditions for a numerical tidal model[J].Computer Methods in Applied Mechanics and Engineering,1993,102(1):367-387. [6] LARDER R W,AL-REBEH A H,GUNAY N.Optimal Estimation of Parameter for a Two-Dimensional Hydro-dynamical Model of the Arabian Gulf[J].Journal of Geophysical Research,1993,98(2):18229-18242. [7] 韩桂军,何柏荣,马纪瑞,等.海洋水温垂直分布数据同化方法研究[J].海洋学报,2000,22(4):1-7. [8] RICHARDSON J E,PANCHANG V G.A modified adjoint method for inverse eddy viscosity estimation in coastal circulation models[C]//Estuarine and coastal modeling.New York:Proc 2nd Int Conf,Amer Soc Civil Engrs,1992:733-745. [9] NAVON I M.Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography[J].Dyn Atmos Oceans,1997,27(3):55-79. [10] 黄思训,韩威,伍荣生.结合反问题技巧对一维海温模式变分资料同化的理论分析及数值实验[J].中国科学,2003,33(9):903-911. [11] TIKHONOV A N,ARSENIN V Y.Solution of Ill-posed Problems[M].Washington:Winsyon and Sons,1977:1-118. [12] 黄思训,伍荣生.大气科学中的数学物理问题[M].北京:气象出版社,2001:411-439. [13] 肖庭延,于慎跟,王彦飞.反问题的数值解法[M].北京:科学出版社,2003:115-126. [14] GILBERT Jean Charles,LEMARECHAL Claude.The modules M1QN3 and N1QN3 Version2.0c(June 1995)[CP/OL].http://www-fp.mcs.anl.gov/otc/Guide/SoftwareGuide/Blurbs/m1qn.htm1,1995. [15] 吕咸青,刘文剑.数据同化中的伴随方法及其有关问题研究[J].海洋科学,2001,25(3):44-50. [16] 韩威.变分资料同化的理论和应用研究[D].解放军理工大学气象学院博士论文,2003:34-42. [17] 程心一.计算流体动力学-偏微积分方程的数值解法[M].北京:科学出版社,1984:119-131. [18] 李海洋,王晓东,谢强.热带太平洋海面盐度年际变化的海洋同化数据分析[J].热带气象学报,2003,19(增刊);97-106. [19] 王学忠,沙文钰,端义宏.利用卫星云图变分同化初始场对热带气旋路径影响的数值试验[J].热带气象学报,2003,20(1):107-112.
点击查看大图
计量
- 文章访问数: 1315
- HTML全文浏览量: 1
- PDF下载量: 1050
- 被引次数: 0