小波分解与SOFM-BP网络结合的西太平洋副高数值预报产品优化技术
NUMERICAL FORECAST PRODUCTS OPTIMIZATION OF THE WEST-PACIFIC SUBTROPICAL HIGH BASED ON THE WAVELET DECOMPOSITION AND SOFM-BP ARTIFICAL NEURAL NETWORKS
-
摘要: 基于1995~1997年夏季(5~8月)T106数值预报场资料,研究讨论了夏季西太平洋副热带高压面积指数的预报误差修正与预报优化问题。首先通过小波分解对预报目标进行频域分解和高频滤波,随后引入了人工神经网络BP模型与自组织特征映射网络(SOFM)相结合的方法,对副高指数的数值预报结果进行了预报优化与误差修正的训练建模。试验结果表明,所建模型能够较为客观、有效地修正副高指数的数值预报误差,优化和改进副高预报效果。Abstract: Based on the T106 numerical forecast model output product (May-August,995~1997),an idea of forecast optimization technique for subtropical high's characteristic index and its errors revisal route were presented and discussed in the paper. Firstly,the time series of prediction target was decomposed into different frequency section by using wavelet method and some high frequency signals and noises were filtered,then a synthetical technique of combining BP (Back-Propagation Network) lgorithm with SOFM (Self-Organizing Feature Map) model of ANN (Artifical Neural Network) was introduced,and some numerical forecast samples were well optimized and its errors were effectively revised by using the technique,experimental results showed that the methods here was promising in practice.
-
[1] 陶诗言.中国夏季副热带天气系统若干问题的研究[M].北京:科学出版社,1963:98-132. [2] 喻世华,张韧.副热带高压进退机理研究[M].北京:解放军出版社,1999:45-87. [3] 吴国雄,丑纪范,刘屹岷,等.热带高压研究进展及展望[J].大气科学,2003,27(4):503-517. [4] 张韧,何金海,董兆俊,等.南亚夏季风影响西太平洋副高南北进退活动的小波包能量诊断[J].热带气象学报,2004,20(2):113-121. [5] 黄晓东,罗会邦.东亚夏季风雨带和西太平洋副高季节变化的耦合特征[J].热带气象学报,2004,20(2):122-128. [6] 晃淑鼓,李月安.欧洲中期天气预报中心T213L31模式夏季预报性能检验[J].气象,1994,20(7):26-31. [7] 王兴荣,姚叶青.1998年副热带高压中期数值预报产品的误差分析[J].热带气象学报,2002,18(4):351-358. [8] 张韧,蒋国荣,余志豪,等.利用神经网络计算方法建立太平洋副高活动的预报模型[J].应用气象学报,2002,11(4):474-483. [9] 张韧.基于前传式网络逼近的太平洋副高活动诊断预测[J].大气科学,2001,25(5):650-660. [10] 阎平凡,张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2000:32-56. [11] Mallat S.A theory for multiresolution signal decomposition:the wavelet representation[J].IEEE Trans Pattern Anal And Mathchine Intell,1989,11(7):674-693.
点击查看大图
计量
- 文章访问数: 740
- HTML全文浏览量: 0
- PDF下载量: 1011
- 被引次数: 0