ISSN 1004-4965

CN 44-1326/P

用微信扫描二维码

分享至好友和朋友圈

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

与天气系统发生和发展有关的非均匀饱和湿位涡理论分析

王兴荣 魏鸣

王兴荣, 魏鸣. 与天气系统发生和发展有关的非均匀饱和湿位涡理论分析[J]. 热带气象学报, 2007, (5): 459-466.
引用本文: 王兴荣, 魏鸣. 与天气系统发生和发展有关的非均匀饱和湿位涡理论分析[J]. 热带气象学报, 2007, (5): 459-466.
WANG Xing-rong, WEI Ming. THEORETICAL ANALYSIS OF NON-UNIFORM SATURATED MOIST POTENTIAL VORTICITY(NUSMPV) ASSOCIATED WITH THE OCCURRENCE AND DEVELOPMENT OF WEATHER SYSTEMS[J]. Journal of Tropical Meteorology, 2007, (5): 459-466.
Citation: WANG Xing-rong, WEI Ming. THEORETICAL ANALYSIS OF NON-UNIFORM SATURATED MOIST POTENTIAL VORTICITY(NUSMPV) ASSOCIATED WITH THE OCCURRENCE AND DEVELOPMENT OF WEATHER SYSTEMS[J]. Journal of Tropical Meteorology, 2007, (5): 459-466.

与天气系统发生和发展有关的非均匀饱和湿位涡理论分析

THEORETICAL ANALYSIS OF NON-UNIFORM SATURATED MOIST POTENTIAL VORTICITY(NUSMPV) ASSOCIATED WITH THE OCCURRENCE AND DEVELOPMENT OF WEATHER SYSTEMS

  • 摘要: 在动力气象理论方面,无论大尺度、中尺度还是小尺度大气运动,对于同一尺度之内大气运动演变机制,有着相当完美的讨论。然而,对于不同尺度天气系统之间转换演变机制讨论,即使因为它与天气系统的出现和发展密切相关而显得非常重要,却很少涉及。为了讨论这个重要的转换演变机制,在导出无粘滞非均匀饱和湿位涡(NUSMPV)方程的基础上,首先,通过对这方程进行数理分析证明:在非均匀饱和湿绝热大气运动中,干区和饱和区之间的不饱和区的NUSMPV是不守恒的,并进一步证明:只在次饱和区(0.78<q/qs<1),NUSMPV不守恒才是明显的,而在其它不饱和区,NUSMPV是接近守恒的。接着,根据守恒的相对性原理,通过NUSMPV无因次形式的讨论,把大气运动分成三类,即NUSMPV守恒,准守恒和不守恒运动。然后用数理分析方法讨论了各类运动的出现条件,时空之间关系,物理机制和一些特征。最后分析了不同尺度之间天气系统的转换机制,指出:当与狭义NUSMPV(P0)有关的涡管项(A)和非绝热加热项(B)之间的动力不平衡(A+B)/P0减少,以至NUSMPV守恒条件满足时,大气运动将主要通过非常快的频散适应过程继续失去不平衡能量,从较小尺度向较大尺度转换;而当(A+B)/P0增加,以至NUSMPV不守恒条件满足时,大气运动将主要通过非常快的外源激发过程,而从较大尺度向较小尺度转换。无论上述两种转换过程是那一种,一旦产生都将持续进行,直至大气运动重新回到NUSMPV准守恒运动状态。

     

  • [1] 叶笃正,李崇银.动力气象学[M].北京:中国科学出版社,1998:1-126.
    [2] ERTEL H.Ein neuer hydrodynamischer wirbelsatz[J].Meteorolog Zeitchr Braunschweig.1942,59:271-281.
    [3] HOSKINS B J,MCINTYRE M E,ROBERTSON R W.On the use and significance of isentropic potential vorticity amps[J].Quarterly Journal of the Royal Meteorological Society.1985,111:877-946.
    [4] BENNETTS D A,HOSKINS B J.Conditional symmetric instability-a possible explanation for frontal rainbands[J].Quarterly Journal of the Royal Meteorological Society,1979,105:945-962.
    [5] EMANUEL K A.Inertial instability and mesoscale convective systems.Part I:Linear theory of inertial instability in rotating viscous fluids[J].Journal of the Atmospheric Sciences,1979,36:2425-2449.
    [6] ROBINSON W A.Analysis of LIMS data by potential vorticity inversion[J].Journal of the Atmospheric Sciences,1988,45:2319-2342.
    [7] DAVIS C A.A potential vorticity diagnosis of the importance of initial structure and condensational heating in observed extratropical cyclogenesis[J].Monthly Weather Review,1992,120:2409-2428.
    [8] HUO Z,ZHANG D L,GYAKUM J R.Interaction of potential vorticity anomalies in extratropical cyclogenesis,part I:Static piecewise inversion[J].Monthly Weather Review,1999,127:2546-2561.
    [9] HAYNES P H,MCINTYRE M E.On the conservation and impermeability theorems for potential vorticity[J].Journal of the Atmospheric Sciences,1990,47:2021-2031.
    [10] 吴国雄,蔡雅萍,唐晓箐.湿位涡和倾斜涡度发展[J].气象学报,1995,53(4):387-405.
    [11] 吴国雄,刘还珠.全型垂直涡度倾向方程和倾斜涡度发展[J].气象学报,1999,57(1):1-15.
    [12] 吴国雄,刘屹岷.热力适应、过流和副高I.热力适应和过流[J].大气科学,2000,24(4):433-446.
    [13] OOYAMA K V.A thermodynamic foundation for modeling the moist atmosphere[J].Journal of the Atmospheric Sciences.1990,47:2580-2593.
    [14] OOYAMA K V.A dynamic and thermodynamic foundation for modeling the moist atmosphere with parameterized microphysics[J].Journal of the Atmospheric Sciences,2001,58:2073-2102.
    [15] SCHUBERT W H,SCOTT A H,MATTHEW GARCIA,et al.Potential Vorticity in a Moist Atmosphere[J].Journal of the Atmospheric Sciences,2001,58:3148-3157.
    [16] GAO Shouting,LEI Ting,ZHOU Yushu.Moist potential vorticity anomaly with heat and mass forcings in torrential rain system[J].Chinese Physics Letters,2002,19:878-880.
    [17] HOSKINS B J,BERRIDFORD P.A potential-vorticity perspective of the storm of 15-16 October 1987[J].Weather,1988,43:122-129.
    [18] KEYSER D,ROTUNNO R.On the formation of potential-vorticity anomalies in upper-level jet-front systems[J].Monthly Weather Review,1990,118:1914-1921.
    [19] CAO Zuohao,CHO Han-ru.Generation of moist potential vorticity in extratropical cyclones[J].Journal of the Atmospheric Sciences,1995,52(18):3263-3281.
    [20] CHO Han-ru,CAO Zuohao.Generation of moist vorticity in extratropical cyclones.Part II:Sensitivity to moisture distribution[J].Journal of the Atmospheric Sciences,1998,55:595-610.
    [21] REED R J,STOELINGA M T,KUO Y H.A model aided study of the origin and evolution of the anomalously high potential vorticity in the inner region of a rapidly deepening marine cyclone[J].Monthly Weather Review,1992,120:893-913.
    [22] FRITSCH J M,MADDOX R A.Convectively drive mesoscale weather system aloft.Part I:Observations[J].Journal of Applied Meteorology,1981,20(1):9-19.
    [23] FRITSCH J M,MURPHYJ D,KAIN J S.Warm core vortex amplification over land[J].Journal of the Atmospheric Sciences,1994,51:1780-1807.
    [24] DAVIS C A,WEISMAN M L.Balanced dynamics of mesoscale vortices in simulated convective systems[J].Journal of the Atmospheric Sciences,1994,51:2005-2030.
    [25] SKAMAROCK W C,WEISMAN M L,KLEMP J B.Three-dimensional evolution of simulatede long-lived squall lines[J].Journal of the Atmospheric Sciences,1994,51:2563-2584.
    [26] GRAY M E B,SHUTTS G J,CRAIG G C.The role of mass transfer in describing the dynamics of mesoscale convective system[J].Quarterly Journal of the Royal Meteorological Society,1998,124:1183-1207.
    [27] RAYMOND D J,JIANG H.A theory for long-lived mesoscale convective systems[J].Journal of the Atmospheric Sciences,1990,47:3067-3077.
    [28] Raymond D J.Nonlinear balance and potential-vorticity thinking at large Rossby number[J].Quarterly Journal of the Royal Meteorological Society,1992,118:987-1015.
    [29] SHUTTS G.J,GRAY M E B.A numerical modelling study of the geostrophic adjustment process following deep convection[J].Quarterly Journal of the Royal Meteorological Society,1994,120:1145-1178.
    [30] FULTON S R,SCHUBERT W H,HAUSMAN S A.Dynamical adjustment of mesoscale convective anvils[J].Monthly Weather Review,1995,123:3215-3226.
    [31] 叶笃正,李麦村.大气运动中的适应问题[M].北京:科学出版社,1965:1-126.
    [32] 王兴荣.环流调整机制的动力学剖析[J].高原气象,1984,3(1):27-35.
    [33] 王兴荣,汪钟兴,石春娥.关于大气运动湿位涡不守恒问题[J].气象科学,1998,13(2):136-141.
    [34] 王兴荣.从不稳定能量触发机制探讨突发性灾害[J].自然灾害学报,1998,7(1):11-15.
    [35] 王兴荣,吴可军,陈晓平,等.突发性灾害天气特征及发生条件的动力学剖析[J].南京气象学院学报,1999,22(4):711-715.
    [36] 王兴荣,尚瑜,姚叶青,等.副高活动与朔望月之间的联系特征及其动力学解释[J].热带气象学报,2001,17(4):423-428.
    [37] 王兴荣.从"湿位涡不守恒"来研究突发性灾害性天气,特大自然灾害预测的新途径和新方法[M] //香山科学会议第133次学术讨论会文集.北京:中国科学技术出版社,2002:128-131.
    [38] WANG Xingrong,YAO Yeqing,YU Shang,et al.Analyses of errors in medium-term numerical forecast products for subtropical high 1998[J].Journal of Tropical Meteorology(英文版),2003,9(1):105-112.
    [39] 王兴荣,吴可军.湿空气动力学若干问题的探讨[J].气象科学,1995,15(1):9-17.
    [40] 王兴荣,石春娥,汪钟兴.非静力平衡条件下的垂直坐标变换及湿空气动力学方程组[J].大气科学,1997,21(5):557-563.
    [41] 王兴荣,吴可军,等.凝结几率函数的引进和非均匀饱和湿空气动力学方程组[J].热带气象学报,1999,15(1):64-70.
    [42] MASON B J.The physics of clouds[M].Oxford:Oxford University Press,1971:1-671.
    [43] 王兴荣,郑媛媛,高守亭,等.中纬度突发性暴雨的可能先兆特征[J].热带气象学报,2006,22(6):612-617.
  • 加载中
计量
  • 文章访问数:  1113
  • HTML全文浏览量:  0
  • PDF下载量:  1266
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-06-05
  • 修回日期:  2006-12-18

目录

    /

    返回文章
    返回