与天气系统发生和发展有关的非均匀饱和湿位涡理论分析
THEORETICAL ANALYSIS OF NON-UNIFORM SATURATED MOIST POTENTIAL VORTICITY(NUSMPV) ASSOCIATED WITH THE OCCURRENCE AND DEVELOPMENT OF WEATHER SYSTEMS
-
摘要: 在动力气象理论方面,无论大尺度、中尺度还是小尺度大气运动,对于同一尺度之内大气运动演变机制,有着相当完美的讨论。然而,对于不同尺度天气系统之间转换演变机制讨论,即使因为它与天气系统的出现和发展密切相关而显得非常重要,却很少涉及。为了讨论这个重要的转换演变机制,在导出无粘滞非均匀饱和湿位涡(NUSMPV)方程的基础上,首先,通过对这方程进行数理分析证明:在非均匀饱和湿绝热大气运动中,干区和饱和区之间的不饱和区的NUSMPV是不守恒的,并进一步证明:只在次饱和区(0.78<q/qs<1),NUSMPV不守恒才是明显的,而在其它不饱和区,NUSMPV是接近守恒的。接着,根据守恒的相对性原理,通过NUSMPV无因次形式的讨论,把大气运动分成三类,即NUSMPV守恒,准守恒和不守恒运动。然后用数理分析方法讨论了各类运动的出现条件,时空之间关系,物理机制和一些特征。最后分析了不同尺度之间天气系统的转换机制,指出:当与狭义NUSMPV(P0)有关的涡管项(A)和非绝热加热项(B)之间的动力不平衡(A+B)/P0减少,以至NUSMPV守恒条件满足时,大气运动将主要通过非常快的频散适应过程继续失去不平衡能量,从较小尺度向较大尺度转换;而当(A+B)/P0增加,以至NUSMPV不守恒条件满足时,大气运动将主要通过非常快的外源激发过程,而从较大尺度向较小尺度转换。无论上述两种转换过程是那一种,一旦产生都将持续进行,直至大气运动重新回到NUSMPV准守恒运动状态。
-
关键词:
- 非均匀饱和湿位涡 /
- 不同尺度之间天气系统 /
- 转换机制
Abstract: At present,in the theory of dynamical meteorology,whether it is a large-scale,meso-scale or small-scale atmospheric movement,there are many quite prefect discussions on the evolution mechanism of atmospheric motion within a single scale.However,there is little discussion on the transformation between weather systems of different scale,even though it is obviously important because it is related to the occurrence and development of weather systems.To discuss the above important transformation mechanism problem,the equation of the frictionless and non-uniform saturated moist potential vorticity(NUSMPV)is derived in this article.First,by mathematical and physical analysis of the equation,it is shown that,in moist adiabatic atmospheric motion,the NUSMPV of the motion is not conserved in the unsaturated regions between the dry area and saturated moist area.It is further shown that in the sub-saturated regions (0.78<q/qs<1)the NUSMPV is not conserved;whereas,in the other unsaturated regions,the NUSMPV may be nearly conserved.Second,according to the relativity principle of conservation,by discussing the non-dimensional form of the NUSMPV equation,the atmospheric motion is classified into three types:motions with conserved,quasi-conserved,and non-conserved NUSMPV.By mathematical and physical analysis,the occurrence condition,the relation between space and time,physical mechanism,and some characteristics are studied for each type of motion.Finally,the transformation mechanism between the synoptic systems of different scale is analyzed.It is pointed out as follows.When the dynamic non-equilibrium degree,which is related to the narrow sense NUSMPV(P0),between the solenoidal term(A) and diabetic heating(B),i.e. (A+B)/P0, decreases so that the condition of NUSMPV conservation is satisfied,the atmospheric motion in NUSMPV conservation state transforms from smaller scale to larger scale mainly by the very fast adaptation process in which the non-equilibrium energy is dispersed and lost by gravitational and sound wave.On the contrary,when the(A+B)/P0 increases so that the condition of non-conservation is satisfied,the atmospheric motion in the NUSMPV non-conservation state transforms from larger scale to smaller scale mainly by the very fast excitation process in which the(A+B)changes NUSMPV by changing vorticity and ∇θ*.Either of the two kinds of transformation process mentioned above will constantly go along till the atmospheric motion is back in the state of NUSMPV quasi-conservation. -
[1] 叶笃正,李崇银.动力气象学[M].北京:中国科学出版社,1998:1-126. [2] ERTEL H.Ein neuer hydrodynamischer wirbelsatz[J].Meteorolog Zeitchr Braunschweig.1942,59:271-281. [3] HOSKINS B J,MCINTYRE M E,ROBERTSON R W.On the use and significance of isentropic potential vorticity amps[J].Quarterly Journal of the Royal Meteorological Society.1985,111:877-946. [4] BENNETTS D A,HOSKINS B J.Conditional symmetric instability-a possible explanation for frontal rainbands[J].Quarterly Journal of the Royal Meteorological Society,1979,105:945-962. [5] EMANUEL K A.Inertial instability and mesoscale convective systems.Part I:Linear theory of inertial instability in rotating viscous fluids[J].Journal of the Atmospheric Sciences,1979,36:2425-2449. [6] ROBINSON W A.Analysis of LIMS data by potential vorticity inversion[J].Journal of the Atmospheric Sciences,1988,45:2319-2342. [7] DAVIS C A.A potential vorticity diagnosis of the importance of initial structure and condensational heating in observed extratropical cyclogenesis[J].Monthly Weather Review,1992,120:2409-2428. [8] HUO Z,ZHANG D L,GYAKUM J R.Interaction of potential vorticity anomalies in extratropical cyclogenesis,part I:Static piecewise inversion[J].Monthly Weather Review,1999,127:2546-2561. [9] HAYNES P H,MCINTYRE M E.On the conservation and impermeability theorems for potential vorticity[J].Journal of the Atmospheric Sciences,1990,47:2021-2031. [10] 吴国雄,蔡雅萍,唐晓箐.湿位涡和倾斜涡度发展[J].气象学报,1995,53(4):387-405. [11] 吴国雄,刘还珠.全型垂直涡度倾向方程和倾斜涡度发展[J].气象学报,1999,57(1):1-15. [12] 吴国雄,刘屹岷.热力适应、过流和副高I.热力适应和过流[J].大气科学,2000,24(4):433-446. [13] OOYAMA K V.A thermodynamic foundation for modeling the moist atmosphere[J].Journal of the Atmospheric Sciences.1990,47:2580-2593. [14] OOYAMA K V.A dynamic and thermodynamic foundation for modeling the moist atmosphere with parameterized microphysics[J].Journal of the Atmospheric Sciences,2001,58:2073-2102. [15] SCHUBERT W H,SCOTT A H,MATTHEW GARCIA,et al.Potential Vorticity in a Moist Atmosphere[J].Journal of the Atmospheric Sciences,2001,58:3148-3157. [16] GAO Shouting,LEI Ting,ZHOU Yushu.Moist potential vorticity anomaly with heat and mass forcings in torrential rain system[J].Chinese Physics Letters,2002,19:878-880. [17] HOSKINS B J,BERRIDFORD P.A potential-vorticity perspective of the storm of 15-16 October 1987[J].Weather,1988,43:122-129. [18] KEYSER D,ROTUNNO R.On the formation of potential-vorticity anomalies in upper-level jet-front systems[J].Monthly Weather Review,1990,118:1914-1921. [19] CAO Zuohao,CHO Han-ru.Generation of moist potential vorticity in extratropical cyclones[J].Journal of the Atmospheric Sciences,1995,52(18):3263-3281. [20] CHO Han-ru,CAO Zuohao.Generation of moist vorticity in extratropical cyclones.Part II:Sensitivity to moisture distribution[J].Journal of the Atmospheric Sciences,1998,55:595-610. [21] REED R J,STOELINGA M T,KUO Y H.A model aided study of the origin and evolution of the anomalously high potential vorticity in the inner region of a rapidly deepening marine cyclone[J].Monthly Weather Review,1992,120:893-913. [22] FRITSCH J M,MADDOX R A.Convectively drive mesoscale weather system aloft.Part I:Observations[J].Journal of Applied Meteorology,1981,20(1):9-19. [23] FRITSCH J M,MURPHYJ D,KAIN J S.Warm core vortex amplification over land[J].Journal of the Atmospheric Sciences,1994,51:1780-1807. [24] DAVIS C A,WEISMAN M L.Balanced dynamics of mesoscale vortices in simulated convective systems[J].Journal of the Atmospheric Sciences,1994,51:2005-2030. [25] SKAMAROCK W C,WEISMAN M L,KLEMP J B.Three-dimensional evolution of simulatede long-lived squall lines[J].Journal of the Atmospheric Sciences,1994,51:2563-2584. [26] GRAY M E B,SHUTTS G J,CRAIG G C.The role of mass transfer in describing the dynamics of mesoscale convective system[J].Quarterly Journal of the Royal Meteorological Society,1998,124:1183-1207. [27] RAYMOND D J,JIANG H.A theory for long-lived mesoscale convective systems[J].Journal of the Atmospheric Sciences,1990,47:3067-3077. [28] Raymond D J.Nonlinear balance and potential-vorticity thinking at large Rossby number[J].Quarterly Journal of the Royal Meteorological Society,1992,118:987-1015. [29] SHUTTS G.J,GRAY M E B.A numerical modelling study of the geostrophic adjustment process following deep convection[J].Quarterly Journal of the Royal Meteorological Society,1994,120:1145-1178. [30] FULTON S R,SCHUBERT W H,HAUSMAN S A.Dynamical adjustment of mesoscale convective anvils[J].Monthly Weather Review,1995,123:3215-3226. [31] 叶笃正,李麦村.大气运动中的适应问题[M].北京:科学出版社,1965:1-126. [32] 王兴荣.环流调整机制的动力学剖析[J].高原气象,1984,3(1):27-35. [33] 王兴荣,汪钟兴,石春娥.关于大气运动湿位涡不守恒问题[J].气象科学,1998,13(2):136-141. [34] 王兴荣.从不稳定能量触发机制探讨突发性灾害[J].自然灾害学报,1998,7(1):11-15. [35] 王兴荣,吴可军,陈晓平,等.突发性灾害天气特征及发生条件的动力学剖析[J].南京气象学院学报,1999,22(4):711-715. [36] 王兴荣,尚瑜,姚叶青,等.副高活动与朔望月之间的联系特征及其动力学解释[J].热带气象学报,2001,17(4):423-428. [37] 王兴荣.从"湿位涡不守恒"来研究突发性灾害性天气,特大自然灾害预测的新途径和新方法[M] //香山科学会议第133次学术讨论会文集.北京:中国科学技术出版社,2002:128-131. [38] WANG Xingrong,YAO Yeqing,YU Shang,et al.Analyses of errors in medium-term numerical forecast products for subtropical high 1998[J].Journal of Tropical Meteorology(英文版),2003,9(1):105-112. [39] 王兴荣,吴可军.湿空气动力学若干问题的探讨[J].气象科学,1995,15(1):9-17. [40] 王兴荣,石春娥,汪钟兴.非静力平衡条件下的垂直坐标变换及湿空气动力学方程组[J].大气科学,1997,21(5):557-563. [41] 王兴荣,吴可军,等.凝结几率函数的引进和非均匀饱和湿空气动力学方程组[J].热带气象学报,1999,15(1):64-70. [42] MASON B J.The physics of clouds[M].Oxford:Oxford University Press,1971:1-671. [43] 王兴荣,郑媛媛,高守亭,等.中纬度突发性暴雨的可能先兆特征[J].热带气象学报,2006,22(6):612-617.
点击查看大图
计量
- 文章访问数: 1113
- HTML全文浏览量: 0
- PDF下载量: 1266
- 被引次数: 0