ISSN 1004-4965

CN 44-1326/P

用微信扫描二维码

分享至好友和朋友圈

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粒子群-神经网络集成学习算法气象预报建模研究

吴建生 刘丽萍 金龙

吴建生, 刘丽萍, 金龙. 粒子群-神经网络集成学习算法气象预报建模研究[J]. 热带气象学报, 2008, (6): 679-686.
引用本文: 吴建生, 刘丽萍, 金龙. 粒子群-神经网络集成学习算法气象预报建模研究[J]. 热带气象学报, 2008, (6): 679-686.
WU Jian-sheng, LIU Li-ping, JIN Long. STUDY ON THE METEOROLOGICAL PREDICTION MODEL USING THE LEARNING ALGORITHM OF NEURAL ENSEMBLE BASED ON PSO ALGORITHMS[J]. Journal of Tropical Meteorology, 2008, (6): 679-686.
Citation: WU Jian-sheng, LIU Li-ping, JIN Long. STUDY ON THE METEOROLOGICAL PREDICTION MODEL USING THE LEARNING ALGORITHM OF NEURAL ENSEMBLE BASED ON PSO ALGORITHMS[J]. Journal of Tropical Meteorology, 2008, (6): 679-686.

粒子群-神经网络集成学习算法气象预报建模研究

基金项目: 国家自然科学基金资助项目(40675023);国家科技部社会公益性研究专项(2004DIB3J122)共同资助

STUDY ON THE METEOROLOGICAL PREDICTION MODEL USING THE LEARNING ALGORITHM OF NEURAL ENSEMBLE BASED ON PSO ALGORITHMS

  • 摘要: 针对BP神经网络在实际气象预报应用中,网络结构难以确定以及网络极易陷入局部解问题,提出一种基于神经网络的粒子群集成学习算法的气象预报模型,以BP算法为基本框架,在学习过程中引入粒子群算法,优化设计神经网络的网络结构和初始连接权,获得一组合适网络结构和初始连接权,再进行新一轮BP神经网络训练,获得一批独立的神经网络个体,以"误差绝对值和最小"为最优准则,采用线性规划方法计算各集成个体的权系数,生成神经网络的输出结论,以此建立短期气候预测模型。以广西的月降水量进行实例分析,计算结果表明该方法学习能力强、泛化性能高,能够有效提高系统预测的准确率。

     

  • [1] 胡江林,涂松柏,冯光柳.基于人工神经网络的暴雨预报方法探讨[J].热带气象学报,2003,19(4):422-428.
    [2] HSIEH W W.Nonlinear canonical correlation analysis of the tropical Pacific climate variability using Neural Network Approach[J].Journal ofClimate,2001,14(12):2 528-2 539.
    [3] GRIORGIO C,GIOGIO G.Coupling Fuzzy Modeling and Neural Networks for River Flood Prediction[J].IEEE Transactions on Systems,Man,andCybernetic-Part C:Applications and Reviews,2005,25(3):382-388.
    [4] 吴建生,金龙,汪灵枝.遗传算法进化设计BP神经网络气象预报建模研究[J].热带气象学报,2006,22(4):411-416.
    [5] 何慧,金龙,覃志年,等.基于BP神经网络模型的广西月降水量降尺度预报[J].热带气象学报,2007,23(1):72-77.
    [6] 金龙,况雪源,等.人工神经网络预报模型过拟和研究[J].气象学报,2004,62(1):62-69.
    [7] HANSEN L K,SALAMON P.Neural network ensembles[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(10):993-1001.
    [8] SOLLICH P,KROGH A.Learning with Ensembles:How Over-fitting can be useful[C] //Advances in Neural Information Processing Systems 8,Cambridge:MIT Press,1996:190-196.
    [9] 周志华,陈世福.神经网络集成[J].计算机学报,2002,25(1):1-8.
    [10] MAO J.A case study on bagging boosting and basic ensembles of neural networks for OCR[C] //Processing International Joint Conference onNeural Networks 1998.Anchorage:International Joint Conference on Neural Networks,1998:1 828-1 833.
    [11] GUTTA S,WECHSLER H.Face recognition using hybrid classifier systems[C] //Proceeding International Joint Conference on Neural Networks 1996.Washington DC:Proceeding International Joint Conference on Neural Networks,1996:1 017-1 022.
    [12] SOLLICH P,INTRATOR N.Classification of seismic signals by integrating ensembles of neural networks[J].IEEE Transactions SignalProcessing,1998,46(5):1 194-1 021.
    [13] NING L,HUAJIE Z,JINJIANG L,et al.Speculated Lesion Detection in digital mammogram based on Artificial Neural Network Ensemble[C].Advances in Neural Networks ISNN,Springer Press,2005,3:790-795.
    [14] SCHAPIRE R E.The strength of weak learn-ability[J].Machine Learning,1990,5(2):197-227.
    [15] BREIMAN L.Bagging prediction[J].Machine Learning,1996,24(2):123-140.
    [16] PERRONE M P,COOPER L N.When network disagree:Ensemble method for Hybrid Neural Networks[R] //Artificial Neural Networks for Speechand Image processing.New York:Chapm & Hall,1993:126-142.
    [17] MERZ C J,PAZZANI M J.A principal components approach to combining regression estimates[J].Machine Learning,1999,36(1-2):9-32.
    [18] ZHIHUA Z,JIANXIN W,WEI T.Ensembling neural networks:Many could be better than all.Artificial Intelligence[J].2002,137(2):239-263.
    [19] BONABEAU E,DORIGO M,THERAULAZ G..Inspiration for optimization from social insect behavior[J].Nature,2000,406(6):39-42.
    [20] XIAOHUI H,EBERHART R.Multi-objective optimization using dynamic neighborhood particle swarm optimization[C] //Proceeding ofcongress on Evolutionary Computation.Hawaii:Ccongress on Evolutionary Computation,2002:1 677-1 681.
    [21] 高海兵,高亮,周驰,等.基于粒子群优化的神经网络训练算法研究[J].电子学报,2004,32(9):1 572-1 574.
    [22] RUMLHART D E,HINTON G E,WILLIAMS R J.Learning representations by back propagating errors[J].Nature,1986,323(9):533-536.
    [23] REED R.Pruning Algorithms-A Survey[J].IEEE Transactions on Neural Networks,1993,4(5):740-747.
    [24] RIGET J,VESTERSTROM J S.A diversity-guided particle swarm optimizer-the ARPSO[R].Technical Report 2002-02,Department of ComputerScience,University of Aarhus,2002:345-350.
    [25] 马振华.运筹学与最优化理论[M].北京:清华大学出版社,1998:235-425.
    [26] VAUTARD.SSA:a toolkit for noisy chaotic signals[J].Physical D,1992,58:95-126.
    [27] 魏凤英,曹鸿兴.长期预测的数学模型及应用[M].北京:气象出版社,1990:142-146.
    [28] 王惠文.偏最小二乘回归方法及其应用[M].北京:国防工业出版社,1999:258-365.
  • 加载中
计量
  • 文章访问数:  949
  • HTML全文浏览量:  10
  • PDF下载量:  1548
  • 被引次数: 0
出版历程
  • 收稿日期:  2007-06-04
  • 修回日期:  2007-11-26

目录

    /

    返回文章
    返回