积云参数化和分辨率对MJO数值模拟的影响
-
摘要: 用中国科学院大气物理研究所发展的一个大气环流模式,使用不同的积云参数化方案和分辨率进行了6个模拟试验,考察了积云参数化方案和模式分辨率对热带大气季节内振荡(MJO)模拟的影响。结果显示:积云参数化方案和分辨率都会影响MJO的模拟。但积云参数化方案决定了模式对MJO模拟的基本能力,决定了模拟的MJO的基本特征。分辨率的变化并不能使模拟的MJO发生本质的改变,分辨率的作用更多的是对MJO的模拟起一定的调制作用,而这种调制作用又受到积云参数化方案的制约。在改进积云参数化方案的基础上提高模式的分辨率会在某些方面改善MJO的模拟。但是分辨率的提高需要同时提高水平分辨率和垂直分辨率,单独提高水平分辨率会降低模式模拟MJO的能力,引入更多的小尺度的高频扰动。非绝热加热垂直廓线对模式模拟MJO有重要的影响,而非绝热加热廓线很大程度上取决于所使用的积云参数化方案。模式水平分辨率的变化不会对加热廓线的结构产生明显的影响,而垂直分辨率的变化会对加热廓线的垂直结构产生一定的调制作用,进而对模拟的MJO起到调制作用。
-
[1] MADDEN R A, JULIAN P R. Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific[J]. J Atmos Sci, 1971, 28:702-708.[2] MADDEN R A, JULIAN P R. Description of global scale circulation cells in the tropics with 40-50 day period[J]. J Atmos Sci, 1972, 29:1 109-1 123.[3] 穆明权, 李崇银. 1998年南海夏季风的爆发与大气季节内振荡的活动[J]. 气候与环境研究,2000, 5: 375-387.[4] 徐国强,朱乾根. 1998年南海夏季风低频振荡特征分析[J]. 热带气象学报,2002, 18(4):309-316.[5] 林爱兰,梁建茵,李春晖. 南海夏季风对流季节内振荡的频谱变化特征[J]. 热带气象学报, 2005, 21(5):542-548.[6] LI C, ZHOU Y. Relationship between Intraseasonal oscillation in the tropical atmosphere and ENSO[J]. Chinese J Geophysics, 1994, 37: 213-223.[7] 翟盘茂,郭艳君,李晓燕. 1997/1998年ENSO过程与热带大气季节内振荡[J]. 热带气象学报,2001, 17(1): 1-9.[8] LI Chong-yin, WU Pei-li. An observational study of 30-50 day atmospheric oscillation Ⅰ: Structure and propagation[J]. Advances in Atmospheric Sciences, 1990, 7: 294-304.[9] 李崇银. 大气中的季节内振荡[J]. 大气科学, 1990, 14(1): 32-45.[10] 李崇银. 大气低频振荡[M]. 北京:气象出版社, 1991: 265.[11] MADDEN R A, JULIAN P R. Observations of the 40-50-day tropical oscillation-A review[J]. Mon Wea Rev, 1994, 122(5): 814-837. [12] HENDON H H, SALBY M L. The life cycle of the Madden-Julian oscillation[J]. J Atmos Sci, 1994, 51(15): 2 225-2 237.[13] MALONEY E D, HARTMANN D L. Frictional moisture convergence in a composite life cycle of the Madden-Julian oscillation[J]. J Climate, 1998, 11(9): 2 387-2 403.[14] SPERBER K R. Propagation and the vertical structure of the Madden-Julian Oscillation[J]. Mon Wea Rev, 2003, 131(12): 3 018-3 037.[15] 董敏,张兴强,何金海. 热带季节内振荡时空特征的诊断研究[J]. 气象学报,2004, 62(6): 821-830.[16] JONES C, WALISER D E, SCHEMM J K, et al. Predication skill of the Madden-Julian Oscillation in dynamical extended range forecasts[J]. Climate Dynamics, 2000, 16: 273-289.[17] 李崇银,贾小龙,董敏. 大气季节内振荡的数值模拟比较研究[J]. 气象学报,2006,64(4):412-419.[18] PARK C K, STRAUS D M, LAU K M, et al. An evolution of the structure of tropical intraseasonal oscillation in three general circulation models[J]. J Meteor Soc Japan, 1990, 68: 403-417.[19] SLINGO J M, COAUTHORS. Intraseasonal oscillation in 15 atmospheric generalcirculation models: Results from an AMIP diagnostic subproject[J]. Climate Dynamics, 1996, 12: 325-357.[20] SPERBER K R. Madden-Julian variability in NCAR CAM 2.0 and CCSM2.0[J]. Climate Dynamics, 2004, 23: 259-278.[21] 贾小龙,李崇银. 热带大气季节内振荡的季节性特征及其在SAMIL-R42L9中的表现[J]. 热带气象学报,2007,23(3):219-228.[22] HAYASHI Y, GOLDER D G. Tropical intraseasonal oscillation appearing in a GFDL general circulation model an FGGE dataⅠ: Phase propagation[J]. J Atmos Sci, 1986, 43(24): 3 058-3 067.[23] DUFFY P B, GOVINDASAMY B, IORIO J P, et al. High-resolution simulations of global climateⅠ:Present climate[J]. Climate Dynamics, 2003, 21: 371-390.[24] INNESS P M, INNESS P M, WOOLNOUGH S J, et al. Organization of tropical convection in a GCM with varying vertical resolution; implications for the simulation of the Madden-Julian Oscillation[J]. Climate Dynamics, 2001, 17: 777-793.[25] JIA Xiao-long, LI Chong-yin, LING Jian, et al. Impacts of the GCM’s Resolution on the MJO Simulation[J]. Advances in Atmospheric Sciences, 2008, 25(1): 139-156.[26] WANG W, SCHLESINGER M E. The dependence on convection Parameterization of the tropical intraseasonal oscillation simulated in the UIUC 11-layer atmospheric GCM[J]. J Climate, 1999, 12(5): 1 423-1 457.[27] MALONEY E D, HARTMANN D L. The sensitive of intraseasonal variability in the NCAR CCM3 to changes in convection parameterization[J]. J Climate, 2001, 14(9): 2 015-2 034.[28] RAJENDRAN K, RAVI S, NANJUNDIAH, et al. Comparison of seasonal and intraseasonal variation of tropical climate in NCAR CCM2 GCM with two different cumulus schemes[J]. Meteorology and Atmospheric Physics, 2002, 79(1): 57-86.[29] LEE Myong-in, KANG In-Sik, MAPES B E. Impacts of cumulus convection parameterization on aqua-planet AGCM simulations of tropical intraseaosnal variability[J]. J Meteor Soc Japan, 2003, 81: 963-992.[30] LIU P, WANG B, SPERBER K R, et al. MJO in the NCAR CAM2 with the Tiedtke convection scheme[J]. J Climate, 2005, 18(15): 3 007-3 020.[31] EDWARDS J M, SLINGO A. Studies with a flexible new radiation code I:Choosing a configuration for a large-scale model[J]. Quarterly Journal of the Royal Meteorological Society, 1996, 122: 689-719.[32] SLINGO J M. A cloud parameterization scheme derived from GATE data for use with a numerical model[J]. Quarterly Journal of the Royal Meteorological Society, 1980, 106: 747-770.[33] SLINGO J M. The development and verification of a cloud prediction scheme for the ECMWF model[J]. Quarterly Journal of the Royal Meteorological Society, 1987, 113: 899-927.[34] HOLTSLAG A A M, BOVILLE B. Local versus nonlocal boundary-layerdiffusion in a global climate model[J]. J Climate, 1993, 6(10): 1 825-1 842.[35] XUE Y, SELLERS P J, LINTER J L, et al. A simplified biosphere model for global climate studies[J]. J Climate, 1991, 4(3): 345-364.[36] 周天军, 宇如聪, 王在志, 等. 大气环流模式SAMIL及其耦合模式FGOALS-s[M]. 北京:气象出版社,2005: 288.[37] 王在志,吴国雄,刘平,等. 全球海-陆-气耦合模式大气模式分量的发展及其气候模拟性能Ⅰ:水平分辨率的影响[J]. 热带气象学报,2005, 21(3):225-237.[38] 王在志,宇如聪,王鹏飞,等. 全球海-陆-气耦合模式大气模式分量的发展及其气候模拟性能Ⅱ:垂直分辨率的提高及其影响[J]. 热带气象学报,2005,21(3):238-247.[39] MANABE S, SMAGORINSKY J, STRICKLER R F. Simulated climatology of general circulation model with a hydrologic cycle[J]. Mon Wea Rev, 1965, 93(12): 769-798.[40] ZHANG G J, MCFARLANE N A. Sensitivity of climate simulation to the parameterization of cumulus convection in the Canadian Climate Centre General Circulation Model[J]. Atmosphere-Ocean, 1995, 33: 407-446.[41] TIEDTKE M. A comprehensive mass flux scheme for cumulus parameterization in large-scale models[J]. Mon Wea Re, 1989, 117(8): 1 779-1 800.[42] KALNAY E, COAUTHORS. The NCEP/NCAR 40-Year Reanalysis Project[J]. Bulletin of the American Meteorological Society, 1996, 77(3): 437-471.[43] XIE P, ARKIN P A. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model output[J]. Bulletin of the American Meteorological Society, 1997, 78(11): 2 539-2 558.[44] HAYASHI Y. Space-time spectral analysis and its application to atmosphereric waves[J]. J Metero Soc Japan, 1982, 60: 156-171.[45] 李崇银. 对流凝结加热与不稳定波[J]. 大气科学,1983, 7: 260-268.[46] LAU K M, PENG L. Origin of low-frequency (intraseasonal) oscillation in the tropical atmosphere I: Basic theory[J]. J Atmos Sci, 1987, 44(6): 950-972.[47] CHANG C P, LIM H. Kelvin wave-CISK: A possible mechanism for 30-50 dayoscillation[J]. J Atmos Sci, 1988, 45(11): 1 709-1 720.[48] SUI C H, LAU K M. Origin of low frequency (intraseasonal) oscillation in the tropical atmosphere Ⅱ: Structure and propagation by mobile wave-CISK modes and their modification by lower boundary forcings[J]. J Atmos Sci, 1989, 46(1): 37-56.[49] LIN Jia-lin, MAPES Brian, ZHANG Minghua, et al. Stratiform Precipitation, Vertical Heating Profiles, and the Madden–Julian Oscillation[J]. J Atmos Sci, 2004, 61(3): 296-309.[50] 薛洪斌,钟中,薛峰. 对流凝结加热的垂直分布与低纬大气的30~60天低频振荡[J]. 热带气象学报,2003, 18(4): 397-404.[51] LI Chong-yin, JIA Xiao-long, LING Jian, et al. Sensitivity of MJO Simulations to Convective Heating Profiles[J]. Climate Dynamics, 2009, 32(2): 167-187[52] 贾小龙,李崇银. 热带大气季节内振荡的数值模拟对积云对流参数化方案的敏感性[J]. 气象学报,2007,65(6): 837-855.[53] 周天军,王在志,宇如聪,等. 基于LASG/IAP大气环流谱模式的气候系统模式[J]. 气象学报, 2005, 63(5): 702-715.[54] 包庆,刘屹岷,周天军,等. LASG/IAP大气环流谱模式对陆面过程的敏感性试验[J]. 大气科学,2006, 30(6): 1 077-1 090.
点击查看大图
计量
- 文章访问数: 1307
- HTML全文浏览量: 1
- PDF下载量: 1234
- 被引次数: 0