基于奇异矢量目标观测的梅雨锋低涡观测系统模拟试验
-
摘要: 就江淮梅雨锋低涡预报基于奇异矢量目标观测作了观测系统模拟试验,目的在于对基于奇异矢量目标观测实际实施作预先研究,寻找目标观测中所要遵循原则和实施细节,以及用奇异矢量确定目标观测区的恰当方法。经分析实际奇异矢量相关误差如何影响预报特征,得出在实施目标观测时应遵循的原则:只对奇异矢量相关误差进行订正,不对非奇异矢量相关误差订正;对奇异矢量强相关误差区域优先订正能更为高效率地改进预报;对整个垂直气柱进行订正,而不只对满足阈值区域进行订正;应优先采用效率较高的第一类斜压订正方案。文中两种方法确定的目标观测区与实际奇异矢量相关误差区域在位置、大小、形状上比较相似,两种方法的目标观测区误差影响预报方式与真实奇异矢量相关误差影响预报方式很相近。
-
[1] WU G X, CHEN S J. The effect of mechanical forcing on the formation of a mesoscale vortex[J]. Quart J Roy Meteor Soc, 1985, 111(3): 1049-1070.[2] KUO Y H, CHENG L, ANTHES R A. Mesoscale analyses of Sichuan flood catastrophe 11-15 July 1981[J]. Mon Wea Rev, 1986, 114(11): 1984-2003.[3] 杨静,王鹏云,李兴荣. “99.6”梅雨锋暴雨云和降水物理过程的中尺度数值模拟[J]. 热带气象学报,2003,19(2):203-212.[4] 吴志伟,何金海,韩桂荣,等. 长江中下游梅雨与春季南半球年际模态(SAM)的关系分析[J]. 热带气象学报,2006,22(1): 79-85.[5] 乔全明,罗坚,杨信杰,等. 1991年江淮梅雨暴雨与亚洲季风的关系[J]. 热带气象学报,1994,10(1): 64-68.[6] EMANUEL K, RAYMOND D, BETTS A, et al. Report of the first prospectus development team of the U.S. weather research-program to NOAA and the NSF[J]. Bull Amer Meteor Soc, 1995, 76(8): 1 194-1 208.[7] LANGLAND R, ROHALY G. Adjoint-based targeting of observation for FASTEX cyclones[C]//Preprints, Seventh Conf on Mesoscale Process. Reading: Amer Meteor Soc, 1996: 369-371.[8] JOLY A, JORGENSEN D, SHAPIRO M A, et al. The Fronts and Atlantic Storm-Track Experiment(FASTEX): Scientific objectives and experimental design[J]. Bull Amer Meteor Soc, 1997, 78(9): 1 917-1 940.[9] PALMER T N, GELARO R, BARKMEIJER J, et al. Singular vectors, metrics, and adaptive observations[J]. J Atmos Sci, 1998, 55(4): 633-653.[10] BERGOT T, HELLO G, JOLY A, et al. Adaptive observation: a feasibility study[J]. Mon Wea Rev, 1999, 127(5): 743-765.[11] BERLINER L M, LU Z Q, SNYDER C. Statistical design for adaptive weather observations[J]. J Atmos Sci, 1999, 56(15): 2 536-2 552.[12] BISHOP C H, TOTH Z. Ensemble transformation and adaptive observations[J]. J Atmos Sci, 1999, 56(11): 1 748-1 765.[13] BUIZZA R, MONTANI A. Targeting observations using singular vector[J]. J Atmos Sci, 1999, 56(17): 2 965-2 985.[14] BISHOP C H, ETHERTON B J, MAJUMDAR S J. Adaptive sampling with the ensemble transform kalman filter Part I: Theoretical aspects[J]. Mon Wea Rev, 2001, 129(3): 420-436.[15] MAJUMDAR S J, BISHOP C H, ETHERTON B J. Adaptive sampling with the ensemble transform Kalman filter Part II: Field program implementation[J]. Mon Wea Rev, 2002, 130(5): 1 356-1 369.[16] SNYDER C. Summary of an informal workshop on adaptive observations and FASTEX[J]. Bull Amer Meteor Soc, 1996, 77(5): 953-965.[17] LANGLAND R, GELARO R, ROHALY G D, et al. Targeted observations in FASTEX: Adjoint based targeting procedures and data impact experiments in IOP/8 and IOP/8[J]. Quart J Roy Meteor Soc, 1999, 125(10): 3 241-3 270.[18] SZUNYOGH I, TOTH Z, EMANUEL K A, et al. Ensemble based targeting experiments during FASTEX: The impact of dropsonde data from the Lear Jet[J]. Quart J Roy Meteor Soc, 1999, 125(10): 3 189-3 218.[19] SZUNYOGH I, TOTH Z, MORSS R E, et al. The effect of targeted dropsonde observations during the 1999 Winter Storm Reconnaissance program[J]. Mon Wea Rev, 2000, 128(10): 3 520-3 537.[20] GELARO R, LANGLAND R, ROHALY G D, et al. An assessment of the singular vector approach to targeted observations using the FASTEX data set[J]. Quart J Roy Meteor Soc, 1999, 125(10): 3 299-3 327.[21] BUIZZA R, MONTANI A. Targeting observations using singular vector[J]. J Atmos Sci, 1999, 56(17): 2 965-2 985.[22] LEUTBECHER M. A reduced rank exitmate of forecast error variance changes due to intermittent modifications of the observing network[J]. J Atmos Sci, 2003, 60(5): 729-742.[23] PU Z, KALNAY E. Targeting observations with the quasi-linear inverse and adjoint and adjoint NCEP global models: Performance during FASTEX[J]. Quart J Roy Meteor Soc, 1999, 125(10): 3 329-3 338.[24] LORENZ E N, EMANNEL K. Optimal sites for supplementary weather observations: Simulation with a small model[J]. J Atmos Sci, 1998, 55(3): 399-414.[25] ZHONG Ke, DONG Peiming, ZHAO Sixiong, et al. Adjoint-based sensitivity analysis of a mesoscale low on the mei-yu front and its implications for adaptive observation[J]. Adv Atmos Sci, 2007, 24(3): 435-448. [26] 钟科,王业桂,董佩明,等. 基于假反扰动的江淮梅雨锋低涡初始误差分析[J]. 气候与环境研究,2007,12(5):647-658.[27] GELARO R, REYNOLDS C A, LANGLAND R H, et al. A predictability study using geostationary satellite wind observations during NORPEX[J]. Mon Wea Rev, 2000, 128(11): 3 789-3 807.[28] HANSEN J A, SMITH L A. The role of operational constraints in selecting supplementary observations[J]. J Atmos Sci, 2000, 57(17): 2 859-2 871.[29] MORSS R E, EMANUEL K A, Snyder C. Idealized adaptive observation strategies for improving numerical weather prediction[J]. J Atmos Sci, 2001, 58(2): 210-232.[30] BAKER N L, DALEY R. Observation and background adjoint sensitivity in the adaptive observation-targeting problem[J]. Quart J Roy Meteor Soc, 2000, 126(4): 1 431-1 454.[31] DING Yihui, ZHANG Yan, MA Qiang, et al. Analysis of the Large-Scale circulation features and synoptic systems in east Asia during the intensive observation period of GAVE/HUBEX[J]. J Meteor Soc Japan, 2001, 79(1): 277-300[32] ZOU X L, VANDENBERGHE F, PONDECA M, et al. Introduction to adjoint techniques and the MM5 adjoint modeling system[R]. NCAR/TN-435-STR, 1997: 1-107.[33] ZOU X L, HUANG W, XIAO Q. A user’s guide to the MM5 adjoint modeling system[R]. NCAR/TN-437+IA, 1998: 1-94.[34] GELARO R, BUIZZA R, PALMER T N, et al. Sensitivity analysis of forecast errors and the construction of optimal perturbations using singular vectors[J]. J Atmos Sci, 1998, 55(6): 1 012-1 037.[35] KLINKER E, RABIER F, GELARO R. Estimation of key analysis errors using the adjoint technique[J]. Quart J Roy Meteor Soc, 1998, 124(6): 1 909-1 933.
点击查看大图
计量
- 文章访问数: 1175
- HTML全文浏览量: 0
- PDF下载量: 1312
- 被引次数: 0