ISSN 1004-4965

CN 44-1326/P

用微信扫描二维码

分享至好友和朋友圈

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于切线伴随技术计算GRAPES-Meso模式的奇异向量

杨学胜 王洪庆

杨学胜, 王洪庆. 基于切线伴随技术计算GRAPES-Meso模式的奇异向量[J]. 热带气象学报, 2010, (4): 421-430.
引用本文: 杨学胜, 王洪庆. 基于切线伴随技术计算GRAPES-Meso模式的奇异向量[J]. 热带气象学报, 2010, (4): 421-430.

基于切线伴随技术计算GRAPES-Meso模式的奇异向量

  • 摘要: 集合数值天气预报的关键问题就是如何生成有效的初始扰动。奇异向量反映了初始扰动在大气系统相空间中演变发展的最不稳定方向,基于奇异向量产生的集合样本是模拟概率密度函数的最合理方法。以非静力、半隐式半拉格朗日GRAPES-Meso中尺度数值预报模式为基础,采用Lanczos迭代算法,利用GRAPES-Meso的切线伴随模式计算GRAPES奇异向量。为了检验求得的奇异向量的正确性,提出了两种检验奇异向量正确性的方法:一是比较计算的奇异值的一致性;二是依据特征向量在矩阵变换中的方向不变性意义,验证GRAPES奇异向量空间结构的正确性。最后研究了不同的时间间隔对GRAPES奇异向量的影响,结果表明GRAPES奇异向量在36小时的最优时间间隔误差增长速度最快,这表明在非静力、半隐式半拉格朗日格点模式中利用切线伴随技术计算奇异向量是可行的。

     

  • [1] EHRENDORGER M. The Liouville equation and its potential usefulness for the prediction of forecast skill. Part I: Theroy[J]. Mon Wea Rev, 1994, 122(4): 703-713.[2] EHRENDORGER M. The Liouville equation and its potential usefulness for the prediction of forecast skill. PartⅡ: Applications[J]. Mon Wea Rev, 1994, 122(4): 714-728. [3] TOTH Z, KALNAY E. Ensemble forecasting at NMC: the generation of perturbations[J]. Bul Amer Meteor Soc, 1993, 74(12): 2 317-2 330. [4] TOTH Z, KALNAY E. Ensemble forecasting at NCEP and the breeding method[J]. Mon Wea Rev, 1997, 125(12): 3 297-3 319. [5] FARRELL B F. Small error dynamics and the predictability of atmospheric flows[J]. J Atmos Sci, 1990, 47(20): 2 409-2 416. [6] MOLTENI F, BUIZZA R, PALMER T N, et al. The new ECMWF ensemble prediction system: methodology and validation[J]. Quar Jour Roy Meteo Soc, 1996, 122: 73-119. [7] BUIZZA R. Sensitivity of optimal unstable structures[J]. Quar Jour Roy Meteo Soc, 1994, 120: 429-451.[8] BUIZZA R, Palmer T N. The singular-vector structure of the atmospheric global circulation[J]. J Atmos Sci, 1995, 52(9): 1 434-1 456.[9] KALNAY E. Atmospheric modeling, data assimilation and predictablility[M]. Cambridge:Cambridge University Press, 2003. [10] BUIZZA R. Linerarity of optimal perturbation time evolution and sensitivity of ensemble forecasts to perturbation amplitude[R]. ECWMF Technical Report, 1994, No. 205. [11] RITCHIE H, TEMPERTON C, SIMMONS A, et al. Implementation of the semi-Lagrangian method in a high resolution of the ECMWF forecat model[J]. Mon Wea Rev, 1995, 123(2): 489-514. [12] 陈静, 薛纪善, 颜宏. 华南中尺度暴雨数值预报的不确定性与集合预报试验[J]. 气象学报, 2003, 61(4): 203-218.[13] 周霞琼, 端义宏, 朱永禔. 热带气旋路径集合预报方法研究I——正压模式结果的初步分析[J]. 热带气象学报, 2003, 1(19): 1-8. [14] 黄燕燕, 万齐林, 袁金南, 等. 基于BDA扰动法的台风路径集合预报试验研究[J]. 热带气象学报, 2006, 22(1): 49-54. [15] 袁金南, 万齐林, 黄燕燕, 等. 南海热带气旋路径集合预报试验[J]. 热带气象学报, 2006, 22(2): 105-112. [16] CHEN Dehui, XUE Jishan, YANG Xuesheng, et al. New generation of multi-scale NWP system (GRAPES): general scientific design[J]. Chin Sci Bull, 2008, 53(22): 3 433-2 445.[17] ZHANG Renhe, SHEN Xueshun. On the development of the GRAPES–A new generation of the national operational NWP system in China[J]. Chin Sci Bull, 2008, 53(22): 3 429-3 432.[18] XUE Jishan, ZHUANG Shiyu, ZHU Guofu, et al. Scientific design and preliminary results of three-dimensional variation data assimilation system of GRAPES[J]. Chin Sci Bull, 2008, 53(22): 3 446-3 457.[19] YANG Xuesheng, HU Jianglin, Chen Dehui, et al. Verification of a unified global and regional numerical weather prediction model dynamic core[J]. Chin Sci Bull, 2008, 53(22): 3 458-3 464.[20] YANG Xuesheng, CHEN Jiabin, HU Jianglin, et al. A semi-implicit semi-Lagrangian global non-hydrostatic model and the polar discreti-zation scheme[J]. Sci China Ser D-Earth Sci, 2007, 50(12): 1 885–1 891.[21] 叶成志, 欧阳里程, 李象玉, 等. GRAPES中尺度模式对2005年长江流域重大灾害性降水天气过程预报性能的检验分析[J]. 热带气象学报, 2006, 22(4): 393-399. [22] KONG Rong, WANG Jianjie. Diagnostic investigation of simulation bias wih the GRAPES-Mesao model dor a terrentail rain case. Journal of Tropical Meteorology, 2007, 13(1): 69-72. [23] 邓华, 薛纪善, 徐海明, 等. GRAPES中尺度模式中不同对流参数化方案模拟对流激发的研究[J]. 热带气象学报, 2008,24(4): 327-334. [24] GLOBU G H, VAN LOAN C F. Matrix Computations. Hopkins Fulfillment Service, 3th editions. Baltimore[M]. The Johns Hopkins University press, 1996.[25] CULLUM J K, WILLOUGHBY R A. Lanczos Algorithms for Large Symmetric Eigenvalue Computations: Theory[M]. Philadelphia: SIAM Publications, 2002.[26] CULLUM J K, WILLOUGHBY R A. Lanczos Algorithms for Large Symmetric Eigenvalue Computations: Documentation and Listings Original Lanczos Codes. Web version.
  • 加载中
计量
  • 文章访问数:  1663
  • HTML全文浏览量:  4
  • PDF下载量:  2052
  • 被引次数: 0
出版历程

目录

    /

    返回文章
    返回