利用地基微波辐射计资料反演0-10km大气温湿廓线试验研究
-
摘要: 实测与模拟的微波辐射计亮温存在偏差,导致基于BP神经网络模型的大气温湿廓线反演精度的降低。研究了一种基于资料订正后的BP神经网络反演大气温湿廓线的方法。首先,基于2014年6月南京江宁探空资料,利用MonoRTM模式,模拟中心频率在22.2GHz~58.8GHz范围内22通道亮温;对比模拟和实测南京站微波辐射计资料,建立实测微波辐射计资料订正模型。然后,以南京地区2011-2013年探空资料为输入,模拟22通道亮温数据,并基于模拟的22通道亮温数据和当地探空资料,利用BP神经网络算法,建立大气温度、水汽密度、相对湿度廓线反演模型。最后,利用构建的订正模型,对2014年7月试验获取的微波辐射计资料进行订正,并将订正后的微波辐射计资料输入BP神经网络反演模型,反演0-10km高度58层的大气温度、水汽密度和相对湿度,对比实际探空资料以及微波辐射计二级产品,评估分析反演效果。实验结果表明:所建的反演模型提高了大气温湿廓线反演精度,大气温度、水汽密度和相对湿度均方根误差范围分别为1.0~2.0K、0.20 ~1.93g/m3和2.5%~18.6%。
点击查看大图
计量
- 文章访问数: 1453
- HTML全文浏览量: 2
- PDF下载量: 2580
- 被引次数: 0