QUALITY CONTROL AND EVALUATION OF FLUX DATA OF OBSERVATION PLATFORM ABOUT LAND-ATMOSPHERE INTERACTION IN ZHUHAI PHOENIX MOUNTAIN
-
摘要: 针对广东省珠海凤凰山森林生态系统2015年的湍流原始数据,分析了各修正过程对通量的影响。结果表明:野点较多,需要考虑去除;频率响应修正对通量结果影响不大;倾斜修正的影响在3%左右;超声虚温修正对感热通量的影响变化幅度达30%;WPL修正对碳通量结果影响可达25%左右。经过对观测数据的质量评价,感热通量约有85%,潜热通量和碳通量约有80%的数据可用于通量分析。感热通量在1年中的变化幅度不大;潜热通量变化显著,尤其在季风后迅速增大;碳通量变化与森林下垫面密切相关,夏季变化幅度大,冬季变化较小。Abstract: Analyzed the turbulence data of Zhuhai's Phoenix Mountain Forest Ecosytem in 2015 and the the influence of the correction process. The result is that the spike more and need to consider to remove. The process of frequency reponse correction has little effect on the flux effects, the slope correction has a greater impact and the change about 3%. The sonic temperature correction has a great influence on the sensible heat flux, the various range about 30%. And the WPL correction has a great influence, especailly the carbon flux about 25% variation. After evaluating the quality, the sensible heat flux is about 85%, and the latent heat flux and the carbon flux are about 80% better. The change of latent heat flux is not significant, and the latent heat flux increase rapidly after the monsoon. The change of carbon flux is closely related to the underlying surface of the forest, great changes in summer and small changes in winter.
-
Key words:
- flux data /
- quality control /
- quality evalution /
- interaction between land and atmosphere
-
表 1 IST分类表[37]
质量级 IST范围/% 1 0~15 2 16~30 3 31~50 4 51~75 5 76~100 6 101~250 7 251~500 8 501~1 000 9 > 1 000 表 2 湍流数据质量分级指标[37]
质量标志(QC) 平稳性检测,IST范围/% 发展充分性检测,ITC范围/% 1 0~15 0~30 2 16~30 0~30 3 0~30 31~75 4 31~75 0~30 5 0~75 31~100 6 76~100 0~100 7 0~250 0~250 8 0~1 000 0~1 000 9 > 1 000 > 1 000 表 3 2015年不同月份感热通量数据的等级比较 单位:%。
月份 1 2 3 4 5 6 7 8 9 10 11 12 1~3 44.7 41.0 34.4 51.4 55.4 66.8 53.9 47.8 49.5 36.2 45.5 43.1 4~6 39.7 42.6 46.0 34.7 31.0 24.2 33.8 38.1 37.7 45.3 39.5 40.7 7~8 14.4 15.1 18.1 12.5 12.7 8.2 11.1 13.1 11.7 16.7 13.9 15.1 9 1.2 1.3 1.5 1.4 0.9 0.8 1.2 1.0 1.1 1.9 1.1 1.1 表 4 2015年不同月份潜热通量数据的等级比较 单位:%。
月份 1 2 3 4 5 6 7 8 9 10 11 12 1~3 36.7 28.8 27.6 41.1 45.2 56.4 44.2 42.5 39.5 31.5 38.5 39.5 4~6 42.1 49.0 47.4 39.1 31.1 27.7 35.0 36.5 40.2 41.1 41.8 41.8 7~8 18.0 19.4 20.9 13.6 10.0 9.2 11.1 13.6 16.0 16.9 16.7 13.2 9 4.2 3.2 4.1 6.2 13.7 6.7 9.7 7.4 4.3 10.5 3.0 5.5 表 5 2015年不同月份碳通量数据的等级比较 单位:%。
月份 1 2 3 4 5 6 7 8 9 10 11 12 1~3 34.8 33.6 29.8 44.0 49.8 64.9 48.8 43.1 44.2 28.6 38.5 33.7 4~6 43.5 45.7 45.3 36.4 31.7 24.6 34.7 39.0 40.5 45.1 40.1 42.7 7~8 17.8 18.5 18.1 13.0 10.6 7.0 11.8 13.3 12.8 18.6 18.4 15.9 9 3.9 2.2 6.8 6.6 7.9 3.4 4.7 4.6 2.5 7.7 3.0 7.9 -
[1] 汪文雅, 郭建侠, 王英舜, 等.锡林浩特草原CO2通量特征及其影响因素分析[J].气象科学, 2015, 35(1): 100-107. [2] BI X Y, GAO Z Q, DENG X J, et al. Seasonal and diurnal variations in moisture, heat, and CO2 fluxes over grassland in the tropical monsoon region of southern China[J]. J Geophys Res: Atmos, 2007, 112(D10): 185-194. [3] ZUO J Q, HUANG J P, WANG J M, et al. Surface turbulent flux measurements over the Loess Plateau for a semi-arid climate change study[J]. Adv Atmos Sci, 2009, 26(4): 679-691. [4] GAO Z, LENSCHOW D H, HE Z, et al. Seasonal and diurnal variations in moisture, heat and CO2 fluxes over a typical steppe prairie in Inner Mongolia, China[J]. Hydrol Earth System Sci, 2009, 6(2): 987-998. [5] BELJAARS A C M, HOLTSLAG A A M. Flux parameterization over land surfaces for atmospheric models[J]. J Appl Meteorol, 1987, 30(3): 327-341. [6] 张烺, 李跃清, 李英, 等.青藏高原东部草甸下垫面涡旋相关观测数据的质量控制及评价研究[J].大气科学, 2010, 34(4): 703-714. [7] DING Z W, WEN Z P, WU R G, et al. Surface energy balance measurements over a banana plantation in South China[J]. Theoret Appl Climatol, 2013, 114(1-2): 349-363. [8] 戴光丰, 陈子通. GRAPES模式中地面通量在一次台风数值模拟中的敏感性试验研究[J].热带气象学报, 2013, 29(3): 403-410. [9] DICKINSON R E, HENDERSON-SELLERS A, ROSENZWEIG C, et al. Evapotranspiration models with canopy resistance for use in climate models, a review[J]. Agricul For Meteorol, 1991, 54(2-4): 373-388. [10] ROWNTREE P R. Atmospheric parameterization schemes for evaporation over land: Basic concepts and climate modeling aspects, in Land Surface Evaporation[M]. Springer New York, 1991: 5-29. [11] 王维真, 徐自为, 刘邵民, 等.黑河流域不同下垫面水热通量特征分析[J].地球科学进展, 2009, 24(07): 714-723. [12] 涂钢, 刘辉志, 董文杰.半干旱区不同下垫面近地层湍流通量特征分析[J].大气科学, 2009, 33(4): 719-725. [13] 李玉梅, 彭玉麟, 简茂球, 等.中国南方地表感热通量的时空变化[J].热带气象学报, 2014, 30(6): 1027-1036. [14] 王春林, 周国逸, 唐旭利, 等.鼎湖山针阔叶混交林生态系统呼吸及其影响因子[J].生态学报, 2007, 27(7): 2659-2668. [15] 王安志, 刘建梅, 关德鑫, 等.长白山阔叶红松林显热和潜热通量测算的对比研究[J].林业科学, 2003, 39(6): 21-25. [16] 于贵瑞, 温学发, 李庆康, 等.中国亚热带和温带典型森林生态系统呼吸的季节模式及环境响应特征[J].中国科学(D辑:地球科学), 2004, 34(S2): 84-94. [17] OHTA T, HIYAMA T, TANAKA H, et al. Seasonal variation in the energy and water exchanges above and below a larch forest in eastern Siberia[J]. Hydrolog Proc, 2001, 15(8): 1459-1476. [18] BALDOCCHI D D, VOGEL C A, HALL B. Seasonal variation of energy and water vapor exchange rates above and below a boreal jack pine forest canopy[J]. J Geophys Res: Atmos, 1997, 102(D24): 28939-28951. [19] 朴美花, 刘寿东, 王咏薇, 等.夏季太湖表面辐射和能量通量特征观测分析[J].科学技术与工程, 2014, 14(19): 1-7. [20] 李英, 卢萍.基于通量方差法对青藏高原东侧高寒草甸地表通量的估算[J].气象与环境学报, 2014, 30(6): 134-140. [21] 倪攀, 金昌杰, 王安志, 等.科尔沁草地不同大气稳定度下湍流特征谱分析[J].生态学杂志, 2009, 28(12): 2495-2502. [22] 王春林, 周国逸, 王旭, 等.复杂地形条件下涡度相关法通量测定修正方法分析[J].中国农业气象, 2007, 28(3): 233-240. [23] 徐自为, 刘邵民, 宫丽娟, 等.涡动相关仪观测数据的处理与质量评价研究[J].地球科学进展, 2008, 23(4): 357-370. [24] 韦志刚, 胡嘉骢, 董文杰, 等.珠海凤凰山陆气相互作用与碳通量观测塔的基本观测及晴天主要观测量的日变化特征[J].大气科学, 2016, 40(2): 423-436. [25] 庄金鑫, 王维真, 王介民.涡动相关通量计算及三种主要软件的比较分析[J].高原气象, 2013, 32(1):78-87. [26] 何学敏.艾比湖流域荒漠生态系统碳交换过程及年际碳收支估算与评价[D].乌鲁木齐: 新疆大学, 2015. [27] 黄彬香.北方典型草原湍流运动特征及湍流通量测定方法研究[D].北京: 中国农业大学, 2014. [28] 王介民.涡动相关通量观测指导手册[R]. 2012. [29] 柳媛普, 李锁锁, 吕世华, 等.几种通量资料修正方法的比较[J].高原气象, 2013, 32(6): 1704-1711. [30] 马小红, 苏永红, 鱼腾飞, 等.荒漠河岸胡杨林生态系统涡度相关通量数据处理与质量控制方法研究[J].干旱区地理, 2015, 38(3): 626-635. [31] WILCZAK J M, ONCLEY S P, STAGE S A. Sonic anemometer tilt correction algorithms[J]. Boundary-Layer Meteorology, 2001, 99(1):127-150. [32] MONCRIEFF J B, CLEMENT R, FINNIGAN J, et al. Averaging, detrending, and filtering of eddy covariance time series[M].Handbook of Micrometeorology, 2004, 7-31. [33] MONCRIEFF J B, MASSHEDER J M, BRUIN H D, et al. A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide[J]. Journal of Hydrology, 1997, 188: 589-611. [34] WEBB E K, PEARMAN G I, LEUNING R. Correction of flux measurements for density effects due to heat and water vapour transfer[J]. Quarterly Journal of the Royal Meteorolog Society, 1980, 106(447): 85-100. [35] 王有恒, 景元书, 郭建侠, 等.涡度相关通量修正方法比较[J].气象科技, 2011, 39(3): 363-368. [36] 王娟, 曹元元, 张志广, 等.密度修正对冬小麦/夏玉米轮作田潜热, CO2通量及其能量闭合度的影响[J].中国生态农业学报, 2016, 24(1): 74-80. [37] FOKEN T, GÖOCKEDE M, MAUDER M, et al. Post-field data quality control[M]. Handbook of Micrometeorology, 2004, 29:181-208. [38] 刘伟, 韦志刚, 郑志远, 等.珠海凤凰山林地下垫面观测通量的贡献区分析[J].热带地理, 2016, 36(5): 840-849. [39] PANOFSKY H A, DUTTON J A. Atmospheric turbulence: models and methods for engineering applications[J].AIAA Journal, 1984, 23(12):2008-2009. [40] FOKEN T. Micrometeorology[M].Springer, 2008: 254. [41] 陈继伟, 左洪超, 马凯明.城市冠层上下大气湍流特征分析[J].高原气象, 2014, 33(4): 967-976. [42] 杨智, 刘劲松, 孙绩华.大理近地层山谷盆地湖陆风及湍流特征分析[J].气象与环境学报, 2008, 24(5): 32-37. -