THE IMPROVEMENTS OF GRAPES_TYM AND ITS PERFORMANCE IN NORTHWEST PACIFIC OCEAN AND SOUTH CHINA SEA IN 2013
-
摘要: 2013年国家气象中心对GRAPES_TYM进行了改进,包括集成GRAPES-Meso模式相关改进(即基础模式升级)、对流参数化过程由Simplified Arakawa-Schubert(简称SAS)升级为Meso-SAS,并对涡旋初始化方案进行优化。7个典型个例试验统计分析表明,基础模式升级可使72 h平均路径误差减小10%,在基础模式升级的基础上对流参数化方案的升级可使72 h平均路径误差减小20%,涡旋初始化方案的优化可使72 h平均路径误差进一步减小10%。基础模式的升级和对流参数化方案的升级对GRAPES_TYM的预报路径系统右偏有明显改进;基础模式升级对强度预报的影响不明显,Meso-SAS的应用对12~48 h强度预报的改善效果较显著,而台风初始化方案的优化可以减小6~24 h预报时段内的强度预报误差。2013年全年台风回算结果表明,升级后的GRAPES_TYM其48~72 h后的路径预报误差较准业务系统减小15%~20%,最大风速预报误差减小4%~16%。
-
关键词:
- GRAPES_TYM /
- SAS /
- 涡旋初始化 /
- 台风强度 /
- 台风路径
Abstract: The regional model GRAPES_TYM for TC intensity and track prediction was developed based on the GRAPES-Mesoin 2009 and was put into operational running in 2012. The results of retrospective forecasting in 2011 and results of operational application in 2012 indicated that there exist systematic northward bias of tracks and positive bias of intensity forecast. The above systematic biases were reduced in 2013 through the improvement of the following three aspects:(1) Integration of the improvement from GRAPES-Meso; (2) upgrading of SAS to MESO-SAS; (3) optimization of vortex initialization scheme.Statistical analysis of 7 cases show that the integration of the improvement from GRAPES-Mesocould reduce 72 h average track error by 10%, but the effectswere not obvious for the intensity prediction. Upgrading of SAS to Meso-SAS could reduce 72 h average track error by another 20%, together with the obvious improvement of 12~48 h intensity prediction. Optimization of vortex initialization scheme further reduces 72 h averagetrack error by 10%and the intensity prediction errors of 6~24 h. The results from the whole cases in 2013 show that 48~72 h average track errors could be reduced by 15%~20% and the average intensity errors of maximum wind speed could be reduced by 4%~16%.-
Key words:
- GRAPES_TYM /
- SAS /
- vortex initialization /
- typhoon intensity /
- typhoon track
-
图 2 500 hPa位势高度场(初始时刻同图 1)
阴影部分为Meso-SAS对流参数化试验结果与SAS对流参数化试验结果之差;
实线为SAS对流参数化过程的500 hPa高度场,单位:位势米。表 1 GRAPES_Meso业务模式与GRAPES_TYM的物理过程
物理过程 GRAPESTYM GRAPES-Meso 对流参数化 SAS BMJ 边界层 YSU MRF 微物理过程 WSM6 WSM6 陆面过程 SLAB NOAH 表 2 试验方案
试验名称 描述 GTYM GRAPES_TYM业务模式 NewModel 微物理过程改进 MesoSAS 在NewModel的基础上引入Meso-SAS对流方案 NewVTX 在Meso-SAS的基础上引入涡旋初始化技术的改进 -
[1] ROGERS R F, COAUTHORS. The Intensity forecasting experiment: A NOAA multiyear field program for improving tropical cyclone intensity forecasts[J]. Bull Amer Meteor Soc, 2006, 87(11): 1 523-1 537. [2] DEMARIA M, MAINELLI M, SHAY L K, et al. Further improvements to the statistical hurricane intensity prediction scheme (SHIPS)[J]. Wea Forec, 2005, 20(4): 531-543. [3] GOPALAKRISHNANG, GOLDENBERG S, QUIRINO T, et al. Toward improving high-resolution numerical hurricane forecasting: Influence of model horizontal grid resolution, initialization, and physic[J]. Wea Forec, 2012, 27(3): 647-666. [4] ZHANG D L, ALTSHULERE. The effects of dissipative heating on hurricane intensity[J]. Mon Wea Rev, 1999, 127(12): 3 032-3 038. [5] ZHANG X, QUIRINOT S, YEHK-S, et al. HWRFx: Improving Hurricane Forecast with High-Resolution Modeling[J]. Comput Sci Engineer, 2011, 13(1): 13-21. [6] WANG Y. An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3, Part Ⅰ: Model description and control experiment[J].Mon Wea Rev, 2001, 129(6): 1 370-1 394. [7] TALLAPRAGADA, et al. Regional Hurricane Model Advancements at NCEP/EMC:FY2012[R]. www.ofcm.gov/ihc12/.../05a.../01-tallapragada_ihc_2012.pdf?. [8] 瞿安祥, 麻素红, LIU Q F, 等.全球数值模式中的台风初始化Ⅰ:方案设计[J].气象学报, 2009, 67(5):716-726. [9] 瞿安祥, 麻素红, 李娟, 等.全球数值模式中的台风初始化Ⅱ:业务应用[J].气象学报, 2009, 67(5):727-735. [10] 吴俞, 麻素红, 肖天贵, 等.T213L31模式热带气旋路径数值预报误差分析[J].应用气象学报, 2011, 22(2): 182-193. [11] 麻素红, 吴俞, 瞿安祥, 等. T213与T639模式热带气旋预报误差对比[J].应用气象学报, 2012, 23(2): 167-173. [12] UENO M. A study on the impact of asymmetric components around tropical cyclone center on the accuracy of Bogus data and the t rack forecast[J]. Meteor Atmos Phy, 1995, 56(1-2):125-134. [13] WANG Y-Q. On the bogusing of tropical cyclones in numerical models: The influence of vertical structure[J]. Meteorol Atmos Phy, 1998, 65(3): 153-170. [14] NGUYEN H V, CHEN Y L. High resolution initialization and simulations of Typhoon Morakot (2009)[J]. Mon Wea Rev, 2011, 139(3):1463-1491. [15] CHA D-H, WANG Y. A dynamical initialization scheme for real-time forecasts of tropical cyclones using the WRF model[J]. Mon Wea Rev, 2013, 141(3): 964-986. [16] HENDRICKS E A, PENG M S, LI T. Evaluation of multiple dynamic initialization schemes for tropical cyclone prediction[J]. Mon Wea Rev, 2013, 141(11): 4 028-4 048. [17] WANG Y. On an inverse balance equation in sigma-coordinates for model initialization[J]. Mon Wea Rev, 1995, 123(2): 482-488. [18] KURIHARA Y M, BENDER M A, ROSS R J. An initialization scheme of hurricane models by vortex specification[J]. Mon Wea Rev, 1993, 121(7): 2 030-2 045. [19] JONGILH, HUALU P. Sensitivity of hurricane intensity forecast to convective momentum transport parameterization[J]. Mon Wea Rev, 2006, 134(2): 664-674. [20] JONGIL H, HUALU P. Revision of convection and vertical diffusion schemes in the NCEP global forecast system[J]. Wea Foreast, 2011, 26(4): 520-533. [21] 徐道生, 陈梓彤, 戴光丰, 等.对流参数化方案的改进对GRAPES模式台风预报的影响研究[J].热带气象学报, 2014, 30(2):210-218. [22] MOON I J, GINIS I, HARA T, et al. A physics-based parameterization of air-sea momentum flux at high wind speeds and its impact on hurricane intensity predictions[J]. Mon Wea Rev, 2007, 135(8): 2 869-2 878. -