CLIMATIC CHARACTERISTICS OF RAINSTORM ASSOCIATED WITH INVERTED TROUGH OF TROPICAL CYCLONE IN ZHEJIANG PROVINCE
-
摘要: 基于近40年热带气旋(Tropical Cyclone,简称TC)日降水和最佳路径等观测资料,采用数理统计、天气学分析等方法对浙江省TC倒槽暴雨分布特征及其与TC的相互关系进行研究。(1)浙江省年均会发生1.8次TC倒槽暴雨,占TC暴雨总数约4成,是浙江省台风暴雨中的一种重要形式。每年8—9月是TC倒槽暴雨高发期,暴雨主要发生在宁波南部至温州一带沿海地区,暴雨中心多位于台州和温州沿海。(2)引发浙江省TC倒槽暴雨的热带气旋多在粤东至浙南登陆之后北上转向或西北行,登陆当天最易发生暴雨且雨强最强。暴雨发生时,福建中部沿海经海峡至台湾东北部一带是TC高频活动区。(3)距TC中心2.5~5.0纬距之间和TC东北偏北象限是倒槽暴雨中心的高频落区;较强暴雨发生在TC强度为热带低压时,且强中心易位于TC东北偏东象限,极端强降水发生主要与热带低压和副高等相互作用形成的偏东暖湿急流、TC倒槽强辐合和TC东北偏东象限中尺度深对流系统频繁活动有关。Abstract: Based on the past 40 years of daily rainfall data of tropical cyclones and their best track observations from Shanghai Institute of Typhoon of China Meteorological Administration (CMA), climatic characteristics of rainstorms associated with inverted troughs of tropical cyclones (for brief, called RIT below) in Zhejiang province are investigated in this paper by statistical and weather analysis methods. Results are showed as follows: (1) On average, there are 1.8 times of RIT each year, which account for 41% of total tropical cyclone rainstorm frequency and thus RIT is an important form of tropical cyclone rainstorm in Zhejiang province. Most of RIT happens from August to September and in coastal areas from the southern Ningbo city to Wenzhou city. Moreover, strong precipitation centers are usually located in coastal regions from Taizhou city to Wenzhou city; (2) Tropical cyclones which induce RIT mostly make landfall on the coastal regions from the eastern Guangdong province to the southern Zhejiang province, with northward then recurvature tracks or northwestward tracks over land. On the days of landfall, the RIT most likely occurs and has the strongest rainfall intensity. During the burst period of RIT, tropical cyclones are usually in the region from the coast of middle Fujian province via Taiwan Strait to northeast Taiwan Island; (3) The asymmetric distribution of maximum RIT relative to tropical cyclones is prominent, with high probability in the regions of north-northeast azimuth and the ring between 2.5 and 5.0 degrees of zonal distance from the tropical cyclone center. However, the maximum of RIT intensity appears in tropical depressions and is often located in the east-northeast azimuth. The extreme precipitation events mainly relate with the interaction between tropical cyclones and periphery systems such as western north Pacific subtropical highs, resultant easterly jets and strong convergence near the tropical cyclone inverted troughs, as well as active mesoscale deep convection in the east-northeast azimuth of tropical cyclones.
-
Key words:
- tropical cyclone /
- rainstorm /
- inverted trough /
- climatic characteristic /
- statistics
-
表 1 1971—2010年引发浙江TC倒槽暴雨的TC个例
中央气象台的TC编号 7122 7123 7209 7315 7412 7704 7707 7811 7815 8012 8116 8209 8211 8407 8411 8504 8617 8712 8817 8819 8921 8918 8923 9012 9015 9018 9116 9123 9212 9216 9219 9406 9417 9430 9608 9711 9808 9909 0004 0010 0014 0020 0119 0418 0421 0428 0513 0515 0519 0601 0709 0713 0716 0808 0908 1010 1013 表 2 浙江省(1971—2000年)TC倒槽暴雨发生频率最高10个站
排序 站名 经度/°E 纬度/°N 频率/‰ 1 温岭 121.37 28.37 43.5 2 奉化 121.42 29.67 40.6 2 三门 121.37 29.12 40.6 4 宁海 121.43 29.30 37.7 4 青田 120.28 28.15 37.7 6 平阳 120.57 27.68 34.8 7 温州 120.67 28.00 33.3 8 洪家 121.42 28.62 33.3 9 玉环 121.27 28.08 30.4 10 文成 120.08 27.78 30.4 表 3 浙江1971—2010年导致最强10次TC倒槽暴雨概况
排序 台风名称 中央台编号 时间 站名 雨量/ (mm/(24 h)) 1 Clara 8116 1981-9-22 乐清 475 2 Wendy 9909 1999-9-4 温州 404 3 Yancy 9012 1990-8-20 文成 292 4 Gerald 8712 1987-9-10 温岭 260 5 Gerald 8712 1987-9-11 温州 256 6 Morakot 0908 2009-8-9 三门 248 7 Amy 7707 1977-8-22 奉化 230 8 Winnie 9711 1997-8-18 宁海 218 9 Longwang 0519 2005-10-3 洪家 218 10 Bilis 0010 2000-8-23 泰顺 215 表 4 TC倒槽暴雨中心距TC中心的距离和方位统计
距离区间 方位 平均中心雨量/(mm/(24 h)) 频率/% 0.0~2.5 东北偏北 114.6 7.6 2.5~5.0 东北偏北 156.6 21.2 5.0~7.5 东北偏北 132.0 7.6 7.5~10.0 东北偏北 106.3 12.1 > 10.0 东北偏北 113.2 4.5 2.5~5.0 东北偏东 128.0 10.6 5.0~7.5 东北偏东 250.9 4.5 7.5~10.0 东北偏东 284.0 3.0 2.5~5.0 西北偏北 130.4 19.7 5.0~7.5 西北偏北 97.8 6.1 2.5~5.0 西北偏西 121.0 3.0 -
[1] 陈联寿, 丁一汇.西太平洋热带气旋概论[M].北京:科学出版社, 1979:440-488. [2] 陶诗言.中国之暴雨[M].北京:科学出版社, 1980. [3] MENG Z Y, CHEN L S, XU X D. Recent progress on tropical cyclone research in China[J]. Adv Atmos Sci, 2002, 19(1):103-110. [4] CHEN L S. Observations and forecasts of rainfall distribution[C]//2006, Report on topic 0. 3 of sixth international workshop on tropical cyclones: 36-42. [5] 董美莹, 陈联寿, 郑沛群, 等.登陆热带气旋暴雨突然增幅和特大暴雨之研究进展[J].热带气象学报, 2009, 25(4):495-502. [6] 张钊扬, 钱贞成, 岳甫璐, 等.一次台风倒槽暴雨的GPS同化试验[J].暴雨灾害, 2014, 33(3):247-254. [7] BOSART L F, CARR F H. A case study of excessive rainfall centered around Wellsville[J]. Mon Wea Rev, 1978, 106(3):348-362. [8] DIMEGO G J, BOSART L F. The transformation of tropical storm Agues into an extratropical cyclone, Part Ⅰ: The observed fields and vertical motion computations[J]. Mon Wea Rev, 1982, 110(5): 385-411. [9] BOSART L F, DEAN D B. The Agnes rainstorm of June 1972: Surface feature evolution culminating in inland storm redevelopment[J]. Wea Forecasting, 1991, 6(4): 515-537. [10] 孙建华, 齐琳琳, 赵思雄. "9608"号台风登陆北上引发北方特大暴雨的中尺度对流系统研究[J].气象学报, 2006, 64(1): 57-71. [11] 周明飞, 周永水, 杜小玲.影响贵州的三次台风倒槽暴雨诊断分析[J].暴雨灾害, 2011, 30(2):167-172. [12] 陶祖钰, 田佰军, 黄伟. 9216号台风登陆后的不对称结构和暴雨[J].热带气象学报, 1994, 10(1):69-77. [13] 朱官忠, 曹钢锋, 张善君. 9216号台风倒槽暴雨增幅的机理分析[M]//台风科学、业务试验和天气动力学理论的研究 (第四分册).北京:气象出版社, 1996:129-137. [14] 赵宇, 崔晓鹏, 王建国.由台风低压倒槽引发的山东暴雨过程研究[J].气象学报, 2008, 66(3):423-436. [15] 钱自强, 张德.上海地区台风倒槽暴雨分析[J].大气科学, 1985, 9(4):400-405. [16] 钱维宏, 朱汉苏, 吴峻.台风倒槽内江苏区域性大暴雨的统计和天气动力分析[J].海洋预报, 1990, 7(3):21-26. [17] 王丽芳.江淮梅汛期热带气旋倒槽暴雨特征分析[D].南京信息工程大学硕士学位论文.南京:2013. [18] 邬宗汉. 8116(Clara) 台风与浙东特大暴雨:台风业务试验研究文集[M].北京:气象出版社, 1986:60. [19] 祝启桓, 张淑云, 顾强民, 等.浙江省灾害性天气预报[M].北京:气象出版社, 1992: 42-63. [20] 楼茂园. 9012台风倒槽结构与暴雨中尺度系统[J].气象, 1993, 19(3):7-12. [21] 寿绍文, 励申申, 崔波.中尺度系统和台风降水增幅的关系[M]//台风科学、业务试验和天气动力学理论的研究 (第四分册).北京:气象出版社, 1996:161-166. [22] 查贲, 卢美, 张炎. "罗莎"台风环流北部中——β尺度大暴雨成因分析[J].海洋预报, 2009, 26(3):71-75. [23] 郑峰.一次热带风暴外围特大暴雨分析[J].气象, 2005, 31(4):77-80. [24] 郑峰. 8712号台风热带风暴引发的温州秋后台风倒槽特大暴雨对比分析[J].台湾海峡, 2008, 27(4):542-546. [25] 《大气科学词典》编委会.大气科学词典[M].北京:气象出版社, 1994:597. [26] 苏高利, 苗长明, 毛裕定, 等.浙江省台风灾害及其对农业影响的风险评估[J].自然灾害学报, 2008, 17(5):113-119. [27] DONG M L, CHEN L S, LI Y, et al. Rainfall reinforcement associated with landfalling tropical cyclones[J]. J Atmos Sci, 2010, 67(11):3 541-3 558. [28] 齐琳琳, 赵思雄.热带低压引发上海特大暴雨过程的中尺度特征分析[J].大气科学, 2004, 28(2):254-268. [29] GAO S, MENG Z, ZHANG F, et al. Observational analysis of heavy rainfall mechanisms associated with severe tropical storm Bilis (2006) after its landfall[J]. Mon Wea Rev, 2009, 137(6) : 1 881-1 897. [30] DONG M L, CHEN L S, LI Y, et al. Numerical study of cold air impact on rainfall reinforcement associated with landfalling tropical cyclone Talim (2005): Impact of different cold air intensity[J]. J Trop Meteor, 2013, 19(1): 87-96. [31] 程正泉, 陈联寿, 刘燕, 等. 1960—2003年我国热带气旋降水的时空分布特征[J].应用气象学报, 2007, 18(4): 427-434. -