CHARACTERISTICS OF THE OUTFLOW LAYER OF TROPICAL CYCLONE RAPID INTENSIFICATION IN THE WESTERN NORTH PACIFIC
-
摘要: 选择西北太平洋1979—2012年的259个TC迅速加强 (RI) 阶段,利用IBTrACS的TC最佳路径观测资料、高分辨率的卫星观测资料 (GOES-10/12 CIMSS、Digital Typhoon),以及高分辨率的大气再分析资料 (ERA Interim),针对TC的高空外流通道类型、TC高空外流与周边环境场相互作用的类型进行分类分析。结果表明,迅速加强热带气旋的高空外流特征分为5类:单通道朝向赤道型 (SE)、单通道朝向极地型 (SP)、双通道分别朝向极地与赤道型 (D)、无急流通道型 (N)、通道转换型 (T)。SE、SP、D型的RI过程分为8种TC高空外流与周围环境场相互作用的基础类型,南亚高压、南半球的反气旋环流、位于TC东部与西部的中纬度高空槽(或TUTT)是影响TC高空外流的主要天气系统。Abstract: Compared to the boundary layer processes, tropical cyclone (TC) outflow layer processes have drawn considerably less attention. It is suggested that tropical cyclone outflow is the link between environmental systems and the inner core. 259 cases of TC rapid intensification (RI) in the Western North Pacific during 1979—2012 were selected. The TC best-track data from the International Best Track Archive for Climate Stewardship (IBTrACS), high-resolution satellite observation data (GOES-10/12 CIMSS; Digital Typhoon) and high-resolution atmospheric reanalysis data (ERA interim) were used to examine the upper-level outflow channel patterns and outflow interactions associated with TC intensification. There are five outflow patterns associated with the TC RI, which including a single equatorward outflow channel (SE), a single poleward outflow channel (SP), a double outflow channels (D), no outflow channel (N), as well as the transform outflow channels (T). Eight types of interactions between a TC and its surrounding environment are subdivided from the SE, SP and D outflow patterns. South Asia High, anticyclone of the southern hemisphere and the middle latitude upper-tropospheric trough (or TUTT) are the main systems that enhance the outflow channel.
-
Key words:
- tropical cyclone /
- rapid intensification /
- outflow layer
-
图 3 RI高空外流层急流通道的识别2
a、b、c为Roke 201109190600 UTC;d、e、f为Roke 201109200600 UTC;g、h、i为Nari 200709130500 UTC;j、k、l为Nari 200709150000 UTC。其它说明同图 2。
表 1 1979—2012年西北太平洋RI过程的TC高空外流与周围环境场相互作用类型的频次分布高空外流型
高空外流型 SE Sp D 相互作用类型 I1 I2 I3 I4 I5 I6 I7 I8 频数 48 17 38 13 8 14 13 17 总数 124 14 30 表 2 1979—2012年西北太平洋RI过程的TC高空外流与周围环境场相互作用类型的统计信息类型
类型 TC生成纬度/°N RI始纬度/°N RI持续时间/h RI最大风/kts RI均风/kts RI强度率/(kts/d) I1 11.3 15.2 38 108 84 37.23 I2 13.4 20.0 36 111 89 37.94 I3 12.2 15.9 41 115 85 40.10 I4 12.5 16.3 43 115 85 35.37 I5 13.9 17.8 44 118 87 39.36 I6 14.6 18.2 39 112 86 37.06 I7 13.6 19.8 33 108 86 35.96 I8 11.4 16.2 40 112 87 40.11 -
[1] SHI J J, CHANG S W J, RAMAN S. A numerical study of the outflow layer of tropical cyclones[J]. Mon Wea Rev, 1990, 118(10): 2 042-2 055. [2] KLEIN P M, HARR P A, ELSBERRY R L. Extratropical transition of Western North Pacific tropical cyclones: midlatitude and tropical cyclone contributions to reintensification[J]. Mon Wea Rev, 2 002, 130(9): 2 240-2 259. [3] BLACK P G, ANTHES R A. On the asymmetric structure of the tropical cyclone outflow layer[J]. J Atmos Sci, 1971, 28(8): 1 348-1 366. [4] MERRILL R T.Characteristics of the upper tropospheric environmental flow around hurricanes[J]. J Atmos Sci, 1988, 45(11): 1 665-1 677. [5] MERRILL R T, VELDEN C S. A three-dimensional analysis of the outflow layer of SupertyphoonFlo[J]. Mon Wea Rev, 1996, 124(1): 7-63. [6] MERRILL R T. Structure of the tropical cyclone outflow layer[C]//11th Conf on Hurricanes and Tropical Meteorology, Miami: Amer Meteor Soc, 1984: 421-426. [7] MOLINARI J, VOLLARO D. Symmetric instability in the outflow layer of a major hurricane[J]. J Atmos Sci, 2014, 71(10): 3 739-3 746. [8] MOLINARI J, DURAN P, VOLLARO D. Low Richardson number in the tropical cyclone outflow layer[J]. J Atmos Sci, 2004, 71(9): 3 164-3 179. [9] HOLLAND G J, MERRILL R T. On the dynamics of tropical cyclone structural changes[J]. Q J Roy Meteor Soc, 1984, 110(465): 723-745. [10] CHAN K T F, CHAN J C L. Angular momentum transports and synoptic flow patterns associated with tropical cyclone size change[J]. Mon Wea Rev, 2013, 141(11): 3 985-4 007. [11] FEREK R, ELEUTERIO D. Understanding and predicting the impact of outflow on tropical cyclone intensification and structure (Invited presentation)[C]//31st Conf on Hurricanes and Tropical Meteorology, San Diego: Amer Meteor Soc, 2014. [12] 余晖, 吴国雄.湿斜压性与热带气旋强度突变[J].气象学报, 2001, 59(4): 440-449. [13] 于玉斌, 杨昌贤, 姚秀萍.近海热带气旋强度突变的垂直结构特征分析[J].大气科学, 2007, 31(5): 876-886. [14] 黄荣辉, 雷小途.环境场对近海热带气旋突然增强与突然减弱影响的对比分析[J].热带气象学报, 2010, 26(2): 129-137. [15] 梅双丽, 江静.西北太平洋热带气旋迅速增强特征及其影响因子[J].热带气旋学报, 2012, 28(1): 1-11. [16] VENTHAM J D, WANG B. Large-scale flow patterns and their influence on the intensification rates of Western North Pacific tropical storms[J]. Mon Wea Rev, 2007, 135(3): 1 110-1 127. [17] MERRILL R T, VELDEN C S. A three-dimensional analysis of the outflow layer of supertyphoon Flo (1990)[J]. Mon Wea Rev, 1996, 124(1): 47-63. [18] 余晖, 费亮, 端义宏. 8807和0008号台风登陆前的大尺度环境特征与强度变化[J].气象学报, 2002, 60(增刊): 78-87. [19] 李英, 陈联寿, 王继志.登陆TC长久维持与迅速消亡的大尺度环流特征[J].气象学报, 2004, 62(2): 167-179. [20] 陈联寿, 孟智勇.我国热带气旋研究十年进展[J].大气科学, 2001, 25(3): 420-432. [21] BLACK P G, DOYLE J D, MOSKAITIS J R, et al. Tropical cyclone outflow jets observed during the 2012-13 hurricane and severe storm sentinel (HS3) field campaign[C]//31st Conf on Hurricanes and Tropical Meteorology, San Diego: Amer Meteor Soc, 2014. [22] CHEN L, GRAY W M. Global view of the upper level outflow patterns associated with tropical cyclone intensification change during FGGE[R]. Department of Atmospheric Science Paper NO.392, Colorado State University, Fort Collins, CO, 1985: 126. [23] MERRILL R T. Characteristics of the upper tropospheric environmental flow around hurricanes[J]. J Atmos Sci, 1988, 45(11): 1 665-1 677. [24] KNAPP K R, KRUK M C, LEVINSON D H, et al. The international best track archive for climate stewardship (IBTrACS)[J]. Bull Amer Meteor Soc, 2010, 91(3): 363-376. [25] DEE D, UPPALA S. The ERA-Interim reanalysis: configuration and performance of the data assimilation system[J]. Q J Roy Meteor, 2011, 137(656): 553-597. [26] BAUER P, LOPEZ P, BENEDETTI A, et al. Implementation of 1D+4D-Var assimilation of precipitation-affected microwave radiances at ECMWF, Ⅰ: 1D-Var[J]. Q J Roy Meteor Soc, 2006, 132(620): 2 277-2 306. [27] BAUER P, LOPEZ P, BENEDETTI A, et al. Implementation of 1D+4D-Var assimilation of precipitation-affected microwave radiances at ECMWF, Ⅱ: 1D-Var[J]. Q J Roy Meteor Soc, 2006, 132(620): 2 307-2 332. [28] WANG B, ZHOU X. Climate variation and prediction of rapid intensification in tropical cyclones in the western North Pacific[J]. Meteor Atmos Phys, 2008, 99(1): 1-16. [29] WANG X, WANG C, ZHANG L, et al. Multidecadal variability of tropical cyclone rapid intensification in the Western North Pacific[J]. J Clim, 2015, 28(9): 3 806-3 820. [30] GE X, LI T, WANG Y, et al. Tropical cyclone energy dispersion in a three-dimensional primitive equation model: Upper tropospheric influence[J]. J Atmos Sci, 2008, 65(7): 2 272-2 289. [31] YU H, CHEN P, LI Q, et al. Current capability of operational numerical models in predicting tropical cyclone intensity in the Western North Pacific[J]. Wea Forecasting, 2013, 28(2): 353-367. [32] ELSBERRY L E, CHEN L S, et al. Advances in understanding and forecasting rapidly changing phenomena in tropical cyclones[J]. Tropical Cyclone Research and Review, 2013, 2(1): 13-24. [33] ROGERS R, ABERSON S, BLACK M, et al. The intensity forecasting experiment: A NOAA multiyear field program for improving tropical cyclone intensity forecasts[J]. Bull Amer Meteor Soc, 2006, 87(11): 1 523-1 537. [34] DEMARIA M, MAINELLI M, SHAY L K, et al. Further improvements to the statistical hurricane intensity prediction scheme (SHIPS)[J]. Wea Forecasting, 2005, 20(4): 531-543. [35] EMANUEL K A. A statistical analysis of hurricane intensity[J]. Mon Wea Rev, 2000, 128(4): 1 139-1 152. -