ISSN 1004-4965

CN 44-1326/P

用微信扫描二维码

分享至好友和朋友圈

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西北太平洋迅速加强热带气旋的高空外流特征分析

李艳 周灏 葛旭阳 周伟灿

李艳, 周灏, 葛旭阳, 周伟灿. 西北太平洋迅速加强热带气旋的高空外流特征分析[J]. 热带气象学报, 2017, 33(2): 145-154. doi: 10.16032/j.issn.1004-4965.2017.02.001
引用本文: 李艳, 周灏, 葛旭阳, 周伟灿. 西北太平洋迅速加强热带气旋的高空外流特征分析[J]. 热带气象学报, 2017, 33(2): 145-154. doi: 10.16032/j.issn.1004-4965.2017.02.001
Yan LI, Hao ZHOU, Xu-yang GE, Wei-can ZHOU. CHARACTERISTICS OF THE OUTFLOW LAYER OF TROPICAL CYCLONE RAPID INTENSIFICATION IN THE WESTERN NORTH PACIFIC[J]. Journal of Tropical Meteorology, 2017, 33(2): 145-154. doi: 10.16032/j.issn.1004-4965.2017.02.001
Citation: Yan LI, Hao ZHOU, Xu-yang GE, Wei-can ZHOU. CHARACTERISTICS OF THE OUTFLOW LAYER OF TROPICAL CYCLONE RAPID INTENSIFICATION IN THE WESTERN NORTH PACIFIC[J]. Journal of Tropical Meteorology, 2017, 33(2): 145-154. doi: 10.16032/j.issn.1004-4965.2017.02.001

西北太平洋迅速加强热带气旋的高空外流特征分析

doi: 10.16032/j.issn.1004-4965.2017.02.001
基金项目: 

国家自然科学基金项目 40805039

国家自然科学基金项目 41575056

详细信息
    通讯作者:

    李艳,女,山东省人,副教授,博士,主要从事区域气候变化及台风强度变化相关研究。E-mail:yanlee@nuist.edu.cn

  • 中图分类号: P432.2

CHARACTERISTICS OF THE OUTFLOW LAYER OF TROPICAL CYCLONE RAPID INTENSIFICATION IN THE WESTERN NORTH PACIFIC

  • 摘要: 选择西北太平洋1979—2012年的259个TC迅速加强 (RI) 阶段,利用IBTrACS的TC最佳路径观测资料、高分辨率的卫星观测资料 (GOES-10/12 CIMSS、Digital Typhoon),以及高分辨率的大气再分析资料 (ERA Interim),针对TC的高空外流通道类型、TC高空外流与周边环境场相互作用的类型进行分类分析。结果表明,迅速加强热带气旋的高空外流特征分为5类:单通道朝向赤道型 (SE)、单通道朝向极地型 (SP)、双通道分别朝向极地与赤道型 (D)、无急流通道型 (N)、通道转换型 (T)。SE、SP、D型的RI过程分为8种TC高空外流与周围环境场相互作用的基础类型,南亚高压、南半球的反气旋环流、位于TC东部与西部的中纬度高空槽(或TUTT)是影响TC高空外流的主要天气系统。

     

  • 图  1  TC频数的区域分布

    5 °×5 °网格,单位:个。a. RI过程持续时间内 (RI过程发生的初始时刻 (t0) 至结束时刻 (tend)) TC频数的区域分布;b. RI发生的初始时刻 (t0) TC频数的区域分布;c. RI过程中TC强度最强的时刻 (tmax) TC频数的区域分布。

    图  2  RI高空外流层急流通道的识别1

    a、b、c为Podul (2001),代表SE型;d、e、f为Kajiki (2007),代表SP型;g、h、i为Chaba (2010),代表D型;j、k、l为Nari (2001),代表N型。左:增强红外云图;中:云导风 (m/s),绿色是351~500 hPa,黄色是251~350 hPa,蓝色是100~250 hPa (取自美国威斯康辛大学气象卫星研究所的CIMSS网站);右:150~300 hPa平均散度场 (10-6 s-1)。

    图  3  RI高空外流层急流通道的识别2

    a、b、c为Roke 201109190600 UTC;d、e、f为Roke 201109200600 UTC;g、h、i为Nari 200709130500 UTC;j、k、l为Nari 200709150000 UTC。其它说明同图 2

    图  4  RI样本各高空外流型TC的月分布

    图  5  RI样本各高空外流型TC的路径

    a. SE;b. SP;c. D;d. N;e. T。

    图  6  RI过程的平均强度 (kts) 及24 h的强度变率 (kts/d)(a)、RI过程的发生纬度 (°) 及持续时间 (h)(b)

    图  7  RI过程TC外流层与周围环境场相互作用类型

    “A”为反气旋,“E”为赤道。a. I1;b. I2; c. I3;d. I4; e. I5;f.I6; g. I7;h. I8。

    表  1  1979—2012年西北太平洋RI过程的TC高空外流与周围环境场相互作用类型的频次分布高空外流型

    高空外流型 SE Sp D
    相互作用类型 I1 I2 I3 I4 I5 I6 I7 I8
    频数 48 17 38 13 8 14 13 17
    总数 124 14 30
    下载: 导出CSV

    表  2  1979—2012年西北太平洋RI过程的TC高空外流与周围环境场相互作用类型的统计信息类型

    类型 TC生成纬度/°N RI始纬度/°N RI持续时间/h RI最大风/kts RI均风/kts RI强度率/(kts/d)
    I1 11.3 15.2 38 108 84 37.23
    I2 13.4 20.0 36 111 89 37.94
    I3 12.2 15.9 41 115 85 40.10
    I4 12.5 16.3 43 115 85 35.37
    I5 13.9 17.8 44 118 87 39.36
    I6 14.6 18.2 39 112 86 37.06
    I7 13.6 19.8 33 108 86 35.96
    I8 11.4 16.2 40 112 87 40.11
    下载: 导出CSV
  • [1] SHI J J, CHANG S W J, RAMAN S. A numerical study of the outflow layer of tropical cyclones[J]. Mon Wea Rev, 1990, 118(10): 2 042-2 055.
    [2] KLEIN P M, HARR P A, ELSBERRY R L. Extratropical transition of Western North Pacific tropical cyclones: midlatitude and tropical cyclone contributions to reintensification[J]. Mon Wea Rev, 2 002, 130(9): 2 240-2 259.
    [3] BLACK P G, ANTHES R A. On the asymmetric structure of the tropical cyclone outflow layer[J]. J Atmos Sci, 1971, 28(8): 1 348-1 366.
    [4] MERRILL R T.Characteristics of the upper tropospheric environmental flow around hurricanes[J]. J Atmos Sci, 1988, 45(11): 1 665-1 677.
    [5] MERRILL R T, VELDEN C S. A three-dimensional analysis of the outflow layer of SupertyphoonFlo[J]. Mon Wea Rev, 1996, 124(1): 7-63.
    [6] MERRILL R T. Structure of the tropical cyclone outflow layer[C]//11th Conf on Hurricanes and Tropical Meteorology, Miami: Amer Meteor Soc, 1984: 421-426.
    [7] MOLINARI J, VOLLARO D. Symmetric instability in the outflow layer of a major hurricane[J]. J Atmos Sci, 2014, 71(10): 3 739-3 746.
    [8] MOLINARI J, DURAN P, VOLLARO D. Low Richardson number in the tropical cyclone outflow layer[J]. J Atmos Sci, 2004, 71(9): 3 164-3 179.
    [9] HOLLAND G J, MERRILL R T. On the dynamics of tropical cyclone structural changes[J]. Q J Roy Meteor Soc, 1984, 110(465): 723-745.
    [10] CHAN K T F, CHAN J C L. Angular momentum transports and synoptic flow patterns associated with tropical cyclone size change[J]. Mon Wea Rev, 2013, 141(11): 3 985-4 007.
    [11] FEREK R, ELEUTERIO D. Understanding and predicting the impact of outflow on tropical cyclone intensification and structure (Invited presentation)[C]//31st Conf on Hurricanes and Tropical Meteorology, San Diego: Amer Meteor Soc, 2014.
    [12] 余晖, 吴国雄.湿斜压性与热带气旋强度突变[J].气象学报, 2001, 59(4): 440-449.
    [13] 于玉斌, 杨昌贤, 姚秀萍.近海热带气旋强度突变的垂直结构特征分析[J].大气科学, 2007, 31(5): 876-886.
    [14] 黄荣辉, 雷小途.环境场对近海热带气旋突然增强与突然减弱影响的对比分析[J].热带气象学报, 2010, 26(2): 129-137.
    [15] 梅双丽, 江静.西北太平洋热带气旋迅速增强特征及其影响因子[J].热带气旋学报, 2012, 28(1): 1-11.
    [16] VENTHAM J D, WANG B. Large-scale flow patterns and their influence on the intensification rates of Western North Pacific tropical storms[J]. Mon Wea Rev, 2007, 135(3): 1 110-1 127.
    [17] MERRILL R T, VELDEN C S. A three-dimensional analysis of the outflow layer of supertyphoon Flo (1990)[J]. Mon Wea Rev, 1996, 124(1): 47-63.
    [18] 余晖, 费亮, 端义宏. 8807和0008号台风登陆前的大尺度环境特征与强度变化[J].气象学报, 2002, 60(增刊): 78-87.
    [19] 李英, 陈联寿, 王继志.登陆TC长久维持与迅速消亡的大尺度环流特征[J].气象学报, 2004, 62(2): 167-179.
    [20] 陈联寿, 孟智勇.我国热带气旋研究十年进展[J].大气科学, 2001, 25(3): 420-432.
    [21] BLACK P G, DOYLE J D, MOSKAITIS J R, et al. Tropical cyclone outflow jets observed during the 2012-13 hurricane and severe storm sentinel (HS3) field campaign[C]//31st Conf on Hurricanes and Tropical Meteorology, San Diego: Amer Meteor Soc, 2014.
    [22] CHEN L, GRAY W M. Global view of the upper level outflow patterns associated with tropical cyclone intensification change during FGGE[R]. Department of Atmospheric Science Paper NO.392, Colorado State University, Fort Collins, CO, 1985: 126.
    [23] MERRILL R T. Characteristics of the upper tropospheric environmental flow around hurricanes[J]. J Atmos Sci, 1988, 45(11): 1 665-1 677.
    [24] KNAPP K R, KRUK M C, LEVINSON D H, et al. The international best track archive for climate stewardship (IBTrACS)[J]. Bull Amer Meteor Soc, 2010, 91(3): 363-376.
    [25] DEE D, UPPALA S. The ERA-Interim reanalysis: configuration and performance of the data assimilation system[J]. Q J Roy Meteor, 2011, 137(656): 553-597.
    [26] BAUER P, LOPEZ P, BENEDETTI A, et al. Implementation of 1D+4D-Var assimilation of precipitation-affected microwave radiances at ECMWF, Ⅰ: 1D-Var[J]. Q J Roy Meteor Soc, 2006, 132(620): 2 277-2 306.
    [27] BAUER P, LOPEZ P, BENEDETTI A, et al. Implementation of 1D+4D-Var assimilation of precipitation-affected microwave radiances at ECMWF, Ⅱ: 1D-Var[J]. Q J Roy Meteor Soc, 2006, 132(620): 2 307-2 332.
    [28] WANG B, ZHOU X. Climate variation and prediction of rapid intensification in tropical cyclones in the western North Pacific[J]. Meteor Atmos Phys, 2008, 99(1): 1-16.
    [29] WANG X, WANG C, ZHANG L, et al. Multidecadal variability of tropical cyclone rapid intensification in the Western North Pacific[J]. J Clim, 2015, 28(9): 3 806-3 820.
    [30] GE X, LI T, WANG Y, et al. Tropical cyclone energy dispersion in a three-dimensional primitive equation model: Upper tropospheric influence[J]. J Atmos Sci, 2008, 65(7): 2 272-2 289.
    [31] YU H, CHEN P, LI Q, et al. Current capability of operational numerical models in predicting tropical cyclone intensity in the Western North Pacific[J]. Wea Forecasting, 2013, 28(2): 353-367.
    [32] ELSBERRY L E, CHEN L S, et al. Advances in understanding and forecasting rapidly changing phenomena in tropical cyclones[J]. Tropical Cyclone Research and Review, 2013, 2(1): 13-24.
    [33] ROGERS R, ABERSON S, BLACK M, et al. The intensity forecasting experiment: A NOAA multiyear field program for improving tropical cyclone intensity forecasts[J]. Bull Amer Meteor Soc, 2006, 87(11): 1 523-1 537.
    [34] DEMARIA M, MAINELLI M, SHAY L K, et al. Further improvements to the statistical hurricane intensity prediction scheme (SHIPS)[J]. Wea Forecasting, 2005, 20(4): 531-543.
    [35] EMANUEL K A. A statistical analysis of hurricane intensity[J]. Mon Wea Rev, 2000, 128(4): 1 139-1 152.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1382
  • HTML全文浏览量:  33
  • PDF下载量:  803
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-23
  • 修回日期:  2016-08-18
  • 刊出日期:  2017-04-01

目录

    /

    返回文章
    返回