MESOSCALE CHARACTERISTIC ANALYSIS ON THE "0812" ABRUPT RAINSTORM AT GUANZHONG IN MIDSUMMER
-
摘要: 基于WRF模式多普勒雷达同化预报、1 °×1 °的NCEP再分析资料、云图TBB和本地加密观测资料,对2014年8月12日关中地区突发性暴雨过程(“0812”暴雨)进行诊断分析。结果表明:同化C波段雷达资料能有效提升WRF对此次突发性暴雨的预报能力。受中高层北部冷空气侵入和低层冷式切变南压的影响,在“0812”暴雨期间,关中的北部和东部的地面切变辐合线附近先后出现了南北向和东西向的中β尺度重力波,波动持续约4 h、波长约60 km。当北部波动向南传播发展与东部波动合并之后,重力波快速消散,强降水结束。暴雨发生前,波动区的垂直上升速度、雨水含量中心强度和发展高度均迅速达到最大,陕北地区对流层中上部的正湿位涡显著向南下滑至关中上空,出现了有利于中尺度波动发展的湿位涡波列结构,暴雨中心近地层的正湿位涡和垂直梯度异常增大。200 hPa高空急流区南侧、关中西部垂直风切变显著增大及其东移南压为中尺度波动快速发展、传播提供了能量。500 hPa内蒙古中部天气尺度横槽发展东移、引导中低层偏北路冷空气南压,是突发性暴雨的直接影响系统。850 hPa的比湿突增为暴雨提供了热力、水汽条件。近地层显著东南风、不稳定扰动增大和地面切变线是暴雨的有利动力、触发条件;在地面切变线西端附近,3 h变压场出现显著中尺度波动特征。“0812”暴雨与典型盛夏暴雨差异明显:西太平洋副热带高压远离大陆、东南沿海无台风活动,关中低层出现西北路水汽输送,强降雨区周边700 hPa以上深厚位势稳定层结、近地层不稳定层结垂直叠置有利于重力波动发展传播,中尺度对流云团高度低,雷达强降水回波主要位于低层西北风和东北风之间的冷式切变区。Abstract: NCEP 1 ° × 1 ° reanalysis, TBB, local density observation data and WRF forecast assimilated by Radar are used to analyse mesoscale characteristics of the abrupt rainstorm occurred at Guanzhong on 12 August 2014("0812" rainstorm). Results show that: Prediction performance of "0812" rainstorm by WRF assimilated with C band Radar is improved effectively. On the influence of cold air intrusion from north at middle and upper levels and southward cold shear at low level, meso-β gravity waves including the north to southward part around the northern Guanzhong and the east to westward part around the eastern Guanzhong are produced successively. The latter wave near the surface wind shear line. Wavelength of Mesoscale gravity fluctuation are about 60km and duration about 4 hours. Gravity wave dissipated and rainstorm stop after connection between the north part propagating southward and the east part of waves. Intensity and develop height of upward vertical velocity and rainwater content reach maximum near fluctuation region just before the rainstorm. At precipitation beginning, positive Moist Potential Vorticity (MPV) in upper troposphere over the northern part of Shaanxi Province is significantly southward and downward to Guanzhong and MPV with its vertical gradient are anomaly increase over rainstorm center. Mesoscale fluctuations of MPV are conducive to the mesoscale wave development. Vertical wind shear significantly increase and move eastward and southward around areas of south side of Jet flow near western Guanzhong at 200 hPa provide energy for mesoscale fluctuation development and propagation. Synoptic scale horizontal trough moving eastward at 500 hPa near central Mongolia and leading northerly cold air move southward at low levels, which is the direct affecting system on abrupt rainstorm. Humidity increased quickly at 850 hPa provides thermal and moisture condition for rainstorm. Significantly southeast wind near ground and unstable disturbance surge and ground shear line are favorably triggered and dynamic conditions. At the western end of ground shear line, pressure changed during 3 hours appear a feature of significant mesoscale fluctuation. Features between "0812" rainstorm and those of typical Midsummer are obviously different. "0812" rainstorm occurred under the circulation when the Western Pacific subtropical High far from the mainland of China and there are no typhoons at Chinese southeast coast. Meanwhile, the northwest vapor transportation to Guanzhong at low levels is obvious. The vertical distribution of stable stratification above 700hPa and unstable stratification near ground is beneficial to the development and propagation of gravity waves. Cloud height above rainstorm is low, meanwhile, intense precipitation echo by Radar are mainly located between the northwest and northeast wind of cold shear zone at low level.
-
Key words:
- abrupt rainstorm /
- mesoscale characteristics /
- environmental conditions /
- WRF mode /
- gravity wave
-
图 10 同图 9,但为8月12日09时
图 11 同图 9,但为8月12日10时
-
[1] 侯建忠, 王川, 鲁渊平, 等.台风活动与陕西极端暴雨的相关特征分析[J].热带气象学报, 2006, 22(2): 203-208. [2] 张弘, 梁生俊, 侯建忠.西安市两次突发性暴雨成因分析[J].气象, 2006, 32(5): 80-86. [3] 梁生俊, 马晓华.西北地区东部两次典型大暴雨个例对比分析[J].气象, 2012, 38(7): 804-813. [4] 郭大梅, 许新田, 刘勇, 等.陕西中南部一次突发性大暴雨过程分析[J].气象, 2008, 34(9): 40-46. [5] 丁治英, 张兴强, 何金海, 等.非纬向高空急流与远距离台风中尺度暴雨的研究[J].热带气象学报, 2001, 17(2): 144-152. [6] 陈联寿. 登陆热带气旋暴雨的研究和预报[C]//第十四届全国热带气旋科学研讨会论文摘要集. 上海: 中国气象学会, 2007: 3-7. [7] 丛春华, 陈联寿, 雷小途, 等.台风远距离暴雨的研究进展[J].热带气象学报, 2011, 27(1): 264-270. [8] 戴竹君, 王黎娟, 管兆勇, 等.登陆热带风暴"Bilis"维持和暴雨增幅与低纬水汽输送的关系及其数值试验[J].热带气象学报, 2014, 30(2): 45-54. [9] 单磊, 谭桂容, 姚叶青, 等.一次台风远距离暴雨水汽条件及输送过程研究[J].热带气象学报, 2014, 30(2): 353-360. [10] 蔡新玲, 叶殿秀, 孙娴, 等. 1961—2011年陕西省汛期短时降水变化特征[J].高原气象, 2014, 33(6): 1 618-1 626. [11] 韩宁, 苗春生.近6年陕甘宁三省5—9月短时强降水统计特征[J].应用气象学报, 2012, 23(6): 691-700. [12] 井喜, 李栋梁, 李明娟, 等.青藏高原东北侧一次突发性大暴雨环境场综合分析[J].高原气象, 2008, 27(1): 46-56. [13] 慕建利, 李泽椿, 谌芸, 等.一次陕西关中强暴雨中尺度系统特征分析[J].高原气象, 2014, 33(1): 148-161. [14] 徐辉, 柳崇健, 刘英, 等. MM5模式水平扩散项的改进及其对陕西"8. 28"暴雨模拟的影响[J].热带气象学报, 2007, 23(4): 348-353. [15] 范水勇, 王洪利, 陈敏, 等.雷达反射率资料的三维变分同化研究[J].气象学报, 2013, 71(3): 527-537. [16] 刘红亚, 薛纪善, 顾建峰, 等.三维变分同化雷达资料暴雨个例试验[J].气象学报, 2010, 68(6): 779-788. [17] 刘青松, 董海萍, 郭卫东, 等.多普勒雷达资料的直接同化对降雨预报的影响[J].暴雨灾害, 2010, 29(2): 122-128. [18] 徐广阔, 孙建华, 雷霆, 等.多普勒天气雷达资料同化对暴雨模拟的影响[J].应用气象学报, 2009, 20(1): 36-46. [19] 刘寅, 何光鑫, 刘佳伟, 等.雷达资料的3DVAR和EnSRF直接同化方法对一次暴雨预报的影响分析[J].热带气象学报, 2014, 30(5): 894-904. [20] 杨艳蓉, 王振会, 张沛源.利用多普勒天气雷达资料对一次暴雨过程的同化模拟[J].南京气象学院学报, 2008, 31(5): 633-639. [21] 盛春岩, 浦一芬, 高守亭, 等.多普勒天气雷达资料对中尺度模式短时预报的影响[J].大气科学, 2006, 30(1): 93-105. [22] 李平, 解以杨, 李英华, 等. C波段雷达反射率资料的同化与数值模拟[J].气象科技, 2013, 41(3): 506-515. [23] MAIELLO I, FERRETTI R, GENTILE S, et al. Impact of radar dataassimilation for the simulation of a heavy rainfall case in central Italy using WRF-3DVAR[J]. Atmos Meas Tech, 2014(7): 2 919-2 935. [24] 陈渭民.卫星气象学[M].北京:气象出版社, 2012: 278. [25] 祁秀香, 郑永光, 伍志方, 等.一次导致大暴雨的中尺度对流系统演变和风场垂直结构特征[J].热带气象学报, 2015, 31(3): 345-354. [26] 陶祖钰, 周小刚, 郑永光.从涡度、位涡、到平流层干侵入—位涡问题的缘起、应用及其歧途[J].气象, 2012, 38(1): 28-40. [27] 高守亭, 冉令坤, 李小凡.大气中尺度动力学基础及暴雨动力预报方法[M].北京:气象出版社, 2015: 104-109;134-136. [28] 余志豪.重力波浅谈[J].气象, 1980(11): 25-28. [29] 王文, 刘佳, 蔡晓军.重力波对青藏高原东侧一次暴雨过程的影响[J].大气科学学报, 2011, 34(6): 738-747. [30] 寿绍文, 励申申, 寿亦萱, 等.中尺度大气动力学[M].北京:气象出版社, 2012: 73-74. [31] 郭虎, 季崇萍, 张琳娜, 等.北京地区2004年7月10日局地暴雨过程中的波动分析[J].大气科学, 2006, 30(4): 703-709. [32] 孙继松, 何娜, 王国荣, 等. "7.21"北京大暴雨系统的结构演变特征及成因初探[J].暴雨灾害, 2012, 31(3): 218-225. -