ISSN 1004-4965

CN 44-1326/P

用微信扫描二维码

分享至好友和朋友圈

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同环境风场条件下冷尾流对台风强度的影响

叶芳 刘磊 马占宏 王成林

叶芳, 刘磊, 马占宏, 王成林. 不同环境风场条件下冷尾流对台风强度的影响[J]. 热带气象学报, 2017, 33(3): 368-374. doi: 10.16032/j.issn.1004-4965.2017.03.008
引用本文: 叶芳, 刘磊, 马占宏, 王成林. 不同环境风场条件下冷尾流对台风强度的影响[J]. 热带气象学报, 2017, 33(3): 368-374. doi: 10.16032/j.issn.1004-4965.2017.03.008
Fang YE, Lei LIU, Zhan-hong MA, Cheng-lin WANG. Effect of Cold Wake on Typhoon Intensity in Different Environmental Wind Fields[J]. Journal of Tropical Meteorology, 2017, 33(3): 368-374. doi: 10.16032/j.issn.1004-4965.2017.03.008
Citation: Fang YE, Lei LIU, Zhan-hong MA, Cheng-lin WANG. Effect of Cold Wake on Typhoon Intensity in Different Environmental Wind Fields[J]. Journal of Tropical Meteorology, 2017, 33(3): 368-374. doi: 10.16032/j.issn.1004-4965.2017.03.008

不同环境风场条件下冷尾流对台风强度的影响

doi: 10.16032/j.issn.1004-4965.2017.03.008
基金项目: 

国家自然科学基金 41230421

国家自然科学基金 41305045

江苏省自然科学基金 BK20151447

详细信息
    通讯作者:

    刘磊,男,新疆维吾尔自治区人,讲师,博士,主要从事中尺度海气相互作用的研究。E-mail:liu541226@sina.com

  • 中图分类号: P456.7

Effect of Cold Wake on Typhoon Intensity in Different Environmental Wind Fields

  • 摘要: 在不同的环境风场作用下台风移动路径出现差异,导致海洋冷尾流呈现不同的响应特征,从而对台风强度产生影响。利用海气耦合模式进行理想试验,模拟研究了在均匀的东、西风场条件下冷尾流的响应特征,以分析台风强度出现差异的原因。研究结果表明,在均匀的东风环境场与β效应的共同作用下,台风路径呈西北方向移动,冷尾流沿台风路径呈非对称分布,右侧降温幅度大于左侧,并持续影响台风内核海气界面热通量的输送。而均匀的西风环境场抵御了部分β效应,使得台风东移北抬,当强度增强到一定程度后向西北方向移动,最大幅度的冷尾流出现在台风南侧,眼区热通量的输送受冷尾流影响较小。另外,在台风快速加强阶段,眼区范围内的潜热通量输送对台风加强更为关键。

     

  • 图  1  两组敏感性试验的台风移动路径黑圆点为台风初始位置。

    图  2  第12小时(a、b)、第42小时(c、d)、第72小时(e、f)的BGE方案(a、c、e)和BGW方案(b、d、f)的台风移动路径及海表面温度(阴影,单位:℃)分布

    实线为最大风速半径轨迹,断线为2倍最大风速半径,点线为距台风中心200 km范围。

    图  3  均匀东风(a)和西风(b)环境风场作用下的冷尾流影响台风模型图

    阴影区表示冷尾流;内侧圆周和外侧圆周分别表示最大风速半径和2倍最大风速半径;由中心指向外侧的箭头表示台风移动方向;圆周外围的箭头表示环境风场。

    图  4  BGE方案和BGW方案的台风中心最低海平面气压(黑色线)与10 m最大风速(蓝色线)

    图  5  不同区域的BGE方案(红线)和BGW方案(蓝线)的台风不同区域范围内的SST、潜热及潜热差值(单位:W/m2)随时间变化曲线

  • [1] 张翰, 管玉平.登陆我国大陆热带气旋的纬度分布特征[J].物理学报, 2012, 61(16): 9 203.
    [2] 张翰, 管玉平.南海夏季风与登陆我国大陆初旋的关系[J].物理学报, 2012, 61(12): 9 201.
    [3] WANG S, GUAN Y, GUAN T, et al. Oscillation in frequency of tropical cyclones passing Taiwan and Hainan Islands and the relationship with summer monsoon[J]. Chinese J Oceanol Limnol, 2012, 30(6): 966-973.
    [4] ZHANG H, GUAN Y. Impacts of four types of ENSO events on tropical cyclones making landfall over Mainland China Based on three best-track datasets[J]. Adv Atmos Sci, 2014, 31(1): 154-164.
    [5] LIN I-I, BLACK P, PRICE J F, et al. An ocean coupling potential intensity index for tropical cyclones[J]. Geophys Res Lett, 2013, 40(9): 1 878-1 882. doi:10.1002/grl.50091.
    [6] 端义宏, 陈联寿, 许映龙, 等.我国台风监测预报预警体系的现状及建议[J].中国工程科学, 2012, 14(9): 4-9.
    [7] SCHADE L R, EMANUEL K A. The ocean's effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere-ocean model[J]. J Atmos Sci, 1999, 56(4): 642-651.
    [8] WANG Y, WU C-C. Current understanding of tropical cyclone structure andintensity changes--A review[J]. Meteorol Atmos Phy, 2004, 87(4): 257-278.
    [9] RAPPAPORT E N, JIING J-G, LANDSEA C W, et al. The joint hurricane test bed: Its first decade of tropical cyclone research-to-operationsactivities reviewed[J]. Bull Amer Meteorol Soc, 2012, 93(3): 371-380.
    [10] WILLOUGHBY H E. Hurricane heat engines[J]. Nature, 1999, 401(6 754): 649-650.
    [11] EMANUEL K A. An air-sea interaction theory for tropical cyclones, Part 1: Steady-state aintenance[J]. J Atmos Sci, 1986, 43(6): 585-605.
    [12] MA Z, FEI J, LIU L, et al. Effects of the cold core eddy on tropical cyclone intensity and structure under idealized air-sea interaction conditions[J]. Mon Wea Rev, 2013, 141(4): 1 285-1 303.
    [13] YABLONSKY R M, GINIS I. Impact of a warm ocean eddy' circulation on Hurricane-Induced Sea surface cooling with implications for hurricane intensity[J]. Mon Wea Rev, 2013, 141(3): 997-1 021.
    [14] D'ASARO E A, SANFORD T B, NIILER P P, et al. Cold wake of Hurricane Frances[J]. Geophys Res Lett, 2007, 34: L15609, doi:10.1029/2007GL030160.
    [15] MRVALJEVIC R K, BLACK P G, CENTURIONI L R, et al. Observations of the cold wake of Typhoon Fanapi(2010)[J]. Geophys Res Lett, 2013, 40(2): 316-321, doi:10.1029/2012GL054282.
    [16] VINCENT E M, LENGAIGNE M, MADEC G, et al. Processes setting the characteristics of sea surface cooling induced by tropical cyclones[J]. J Geophys Res, 2012, 117: C02020, doi:10.1029/2011JC007396.
    [17] CIONE J J, UHLHORN E W. Sea surface temperature variability in hurricanes: Implications with respect to intensity change[J]. Mon Wea Rev, 2003, 131(8): 1 783-1 796.
    [18] KAPLAN J, DEMARIA M. Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin[J]. Wea Forecast, 2003, 18(6): 1 093-1 108.
    [19] PASQUERO C, EMANUEL K. Tropical cyclones and transient upper-ocean warming[J]. J Clim, 2008, 21(1): 149-162.
    [20] HART R N, MAUE R N, WATSON M C. Estimating local memory of tropical cyclones through MPI anomaly evolution[J]. Mon Wea Rev, 2007, 135(12): 3 990-4 005.
    [21] LIN I I, WU C C, PUN I F, et al. Upper-ocean thermal structure and the western North Pacific category 5 typhoons, Part Ⅰ: Ocean features and the category 5 typhoons' intensification[J]. Mon Wea Rev, 2008, 136(9): 3 288-3 306.
    [22] LIN I I, PUN I F, WU C C. Upper-ocean thermal structure and the western North Pacific cat?egory 5 typhoons, Part Ⅱ: Dependence on translation speed[J]. Mon Wea Rev, 2009, 137(11): 3 744-3 757.
    [23] SANDERY P A, BRASSINGTON G B, CRAIG A, et al. Impacts of ocean-atmosphere coupling on tropical cyclone intensity change and ocean prediction in the Australian region[J]. Mon Wea Rev, 2010, 138(6): 2 074-2 091.
    [24] 王斌, ELSBERRY R L, 王玉清, 等.热带气旋运动的动力学研究进展[J].大气科学, 1998, 22(4): 535-547.
    [25] CHAN J C L. Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific[J]. Meteor Atmos Phys, 2005, 89(1): 143-152.
    [26] DUAN Y H, WU R S, YU H, et al. The role of β-effect and a uniform current on tropical cyclone intensity[J]. Adv Atmos Sci, 2004, 21(1): 75-86.
    [27] 崔红, 张书文, 王庆业.南海对于台风伊布都响应的数值计算[J].物理学报, 2009, 58(9): 6 609.
    [28] MEI W, PASQUERO C, PRIMEAU F. The effect of translation speed upon the intensity of tropical cyclones over the tropical ocean[J]. Geophys Res Lett, 2012, 39(7): 7 801.
    [29] BERG R. Tropical cyclone intensity in relation to SST and moisture variability: A global perspective[P]. San Diego: 25th Conf on Hurricanes and Tropical Meteorology, 2002: 16C.3.
    [30] LEIPPER D F. Observed ocean conditions and Hurricane Hilda[J]. J Atmos Sci, 1967, 24(2): 182-196.
    [31] WALKER N D, LEBEN R R, BALASUBRAMANIAN S. Hurricane-forced upwelling and chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico[J]. Geophys Res Lett, 2005, 32: L18610, doi:10.1029/2005GL023716.
    [32] BENDER M A, GINIS I, KURIHARA Y. Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model[J]. J Geophys Res, 1993, 98: 23 245-23 263.
    [33] KUO Y C, CHERN C S, WANG J, et al. Numerical study of upper ocean response to a typhoon moving zonally across the Luzon Strait[J]. Ocean Dynamics, 2011, 61(11): 1 783-1 795.
    [34] 刘磊, 费建芳, 黄小刚, 等.大气-海浪-海流耦合模式的建立和一次台风过程的初步试验[J].物理学报, 2012, 61(14): 9 201.
    [35] FANG J, ZHANG F. Effect of beta shear on simulated tropical cyclones[J]. Mon Wea Rev, 2012, 140(10): 3 327-3 346.
    [36] QIU X, TAN Z M. The roles of asymmetric inflow forcing induced by outer rainbands in tropical cyclone secondary eyewall formation[J]. J Atmos Sci, 2013, 70(3): 953-974.
    [37] JORDAN C L. Mean soundings for the West Indies area[J]. J Meteor, 1958, 15(1): 91-97.
    [38] D'ASARO E A, BLACK P G, CENTURIONI L R, et al. Impact of typhoons on the ocean in the Pacific[J]. Bull Amer Meteor Soc, 2014, 95(9): 1 405-1 418.
  • 加载中
图(5)
计量
  • 文章访问数:  886
  • HTML全文浏览量:  23
  • PDF下载量:  704
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-16
  • 修回日期:  2017-01-21
  • 刊出日期:  2017-06-01

目录

    /

    返回文章
    返回