THE STUDY OF MULTI-SOURCE DATA CYCLING ASSIMILATION USING GSI-3DVAR IN TRAMI TYPHOON FORECAST
-
摘要: 为了检验不同观测资料在台风预报中的作用,以美国NCEP (National Centers for Environmental prediction)业务同化系统GSI (Grid Statistical Interpolation)为平台,选取2013年路径较复杂且登陆后降水持续较强的“潭美”台风过程为例,分别加入常规地面和高空观测资料、极轨卫星NOAA18、NOAA19、METOP-A和METOP-B资料,以及多普勒雷达基数据资料,探讨不同观测资料同化对台风的预报效果。同时,对台风采用Bogus初始化方案以及循环资料同化对台风路径和强度预报效果进行了对比分析。结果表明:常规观测资料对台风路径预报改善效果最明显,卫星资料的融入对海上台风路径的修正较好,而雷达资料则对台风登陆后的路径预报有改善;并且多源资料的融入效果最好。同时,采用Bogus方案可有效调整初始台风的位置和强度,从而对后期台风路径和强度预报有正效应。采用间隔6 h资料循环同化方法,可有效利用各时段资料,对台风路径和强度预报有较好的改善。Abstract: The assimilation of multi-source data and its impact on the prediction of tropical cyclone Trami(2013) is discussed in the GSI system. The conventional observations, satellite data and radar data are assimilated respectively and the results are compared. It reveals that the assimilation of conventional observations greatly improves the TC track forecast. The assimilation of satellite data shows positive impact on the prediction of TC track before its landing, while the assimilation of radar data improves the prediction of TC track after its landing. It proves that the assimilation of multi-source data presents the best TC track forecast. The TC initialization based on BOGUS and the cycle assimilation are also discussed and their respective impact on TC prediction is also investigated. It shows that BOGUS initialization can adjust the location and intensity of initial vortex according to the observed data and thus improve the TC forecast. The cycling assimilation, which has a 6 h cycle period, is proved to have positive impact on the TC forecast by effectively assimilating more data.
-
Key words:
- multi-source data /
- GSI-3Dvar /
- typhoon forecast /
- BOGUS initialization /
- cycling assimilation
-
表 1 不同观测资料同化的对比试验方案
控制实验 模式初始场只由全球模式提供进行预报(no) 方案1 加入常规观测资料同化后预报(prep) 方案2 加入常规观测和卫星资料同化后预报(prep-cma) 方案3 加入常规观测和卫星、雷达资料同化后预报(prep-cma-rad) -
[1] 任强, 董佩明, 薛纪善, 等.台风数值预报中受云影响微波卫星资料的同化试验[J].应用气象学报, 2009, 20(2):137-146. [2] 丁伟钰, 万齐林, 张诚忠.有云条件下HIRS/3资料的同化及其对"珍珠"台风的影响[J].气象学报, 2010, 68(1):70-78. [3] 李兴武, 董海萍, 郭卫东, 等. ATOVS不同卫星资料在台风模拟中的同化试验研究[J].热带气象学报, 2012, 28(2):217-226. [4] 刘瑞, 翟国庆, 王彰贵. FY-2C云迹风资料同化应用对台风预报的影响试验研究[J].大气科学, 2012, 36(2):350-360. [5] 宋晓姜, 杨学联, 邢建勇. GPS掩星资料三维变分同化对台风模式预报的改进试验[J].海洋学报, 2013, 35(5):67-75. [6] 希爽, 马刚, 张鹏. ATOVS微波观测对2008年台风预报影响的初步评估[J].热带气象学报, 2014, 30(4):700-706. [7] 施丽娟, 许小峰, 李柏, 等.雷达资料在登陆台风"桑美"数值模拟中的应用[J].应用气象学报, 2009, 20(3): 257-266. [8] ZHAO K, XUE M.Assimilation of coastal Doppler radar data with the ARPS 3DVAR and cloud analysis for the prediction of Hurricane Ike (2008)[J].Geophys Res Lett, 2009, 36(12) : L12803, doi: 10.1029/2009GL038658. [9] 沈菲菲, 闵锦忠, 陈鹏, 等.多普勒雷达资料同化在台风"桑美"预报中的应用研究[J].海洋学报, 2015, 37(3): 25-35. [10] 李新峰, 赵坤, 王明筠, 等.多普勒雷达资料循环同化在台风"鲇鱼"预报中的应用[J].气象科学, 2013, 33(3):255-263. [11] 王云峰, 王斌, 马刚.多种观测资料的四维变分同化对台风路径预报的影响[J].科学通报, 2003, 48(增2):82-86. [12] 麻素红, 王建捷, 万丰.人造台风模型及资料同化对T213L31模式台风路径预报能力的影响[J].热带气象学报, 2007, 23(2):141-145. [13] 袁炳, 费建芳, 王云峰, 等.一种非对称台风Bogus方法的数值模拟应用[J].海洋通报, 2010, 29(2):187-193. [14] 林芳妮, 万齐林, 管兆勇.多时刻台风Bogus资料同化对台风"天鹅"的影响[J].热带气象学报, 2011, 27(2):230-236. [15] 黄伟, 梁旭东.台风涡旋循环初始化方法及其在GRAPES-TCM中的应用[J].气象学报, 2010, 68(3):365-375. [16] WU W S, JAMES P R, PARRISH D F. Three-dimensional variational analysis with spatially inhomogeneous covariances[J]. Mon Wea Rev, 2002, 130(12): 2905-2916. [17] 张爱忠, 齐琳琳, 纪飞.资料同化方法研究进展[J].气象科技, 2005, 33(5):385-393.