VARIATION OF NORMALIZED ECONOMIC LOSSES FROM INFLUENTIAL TROPICAL CYCLONES IN CHINA FOR 1984—2014
-
摘要: 根据1984—2014年中国热带气旋损失数据和社会经济统计资料,采用居民消费者物价指数方法(consumer price index,CPI)、常规标准化方法(conventional normalization method,CNM)和替代标准化方法(Alternative Normalization Method,ANM)对影响中国的气旋的直接经济损失进行标准化处理,对比研究了原始的和CPI、CNM、ANM等三种标准化的灾害损失时空特征。研究结果表明:(1) 原始损失值有利于与同年其他灾种损失进行对比以及数据的逐年延长更新,而标准化后的损失值有利于长时间序列的时空比较研究,其中,CPI方法计算简单,易于推广,可用于中国灾害损失的数据处理与分析汇总,而在人口和财富快速增长的地区,CNM和ANM方法有利于体现人口和财富对损失的影响,在长时间序列的时空比较研究方面更具优势;(2) 1984—2014年,共有243个影响气旋影响中国大陆的22个省(区、市),气旋频数多年来没有显著变化趋势,但未登陆的影响气旋和台风(TY)强度及以上等级的影响气旋频数多年来皆呈明显增加趋势;(3) 1984—2014年影响气旋所造成的直接经济损失在原始的和经CPI标准化后的序列中均呈显著增加趋势,而经CNM和ANM标准化后的序列则无明显趋势,原始序列中最高损失年是2013年,CPI、CNM和ANM标准化后损失序列在1996年达到最高值后经历了由高到低的突变,原始的以及三种标准化后的损失序列均存在2~3年的周期振荡,浙江、广东和福建省始终是直接经济损失最高的三个省份;(4) 在对中国大陆造成最高直接经济损失的十个影响气旋中,1996年的“赫伯”(Herb)始终位居首位,而其他影响气旋的排序位次因标准化与否以及标准化方法的不同而有明显差异。
-
关键词:
- 影响热带气旋 /
- 变化特征,经济损失标准化 /
- CPI /
- CNM /
- ANM /
Abstract: Based on direct economic losses and socioeconomic data, consumer price index (CPI) and conventional normalization method (CNM) and alternative normalization method (ANM) were used to investigate the damage caused by tropical cyclones which influenced the mainland of China in the last three decades, and the temporal and spatial variation of original and normalized economic losses were also analyzed. The results are as follows: (1) Original losses are helpful for comparison with other natural disasters occurring in the same year, and also suitable for updating datasets year by year. While normalized losses has an advantage of conducting a long-term study based on a homogeneous series, the CPI method is simple and convenient, and can be recommended to apply in China's disaster data processing and analysis. In regions with rapid growth of population and wealth, the CNM and ANM normalized losses might better address how the population and wealth exposures affect the loss, and thus may be more suitable for conducting a long-term study accordingly; (2) Totally 243 ITCs have influenced 22 provinces in the mainland of China during 1984 to 2014, and no significant monotonic trend was detected for the annual frequency, but an obvious upward trend is found for strong ITCs (with the intensity higher than typhoon); (3) The ITCs annual direct economic losses have shown significant increasing trends according to the original and CPI normalized series, while no apparent growing tendency is detected for the CNM or ANM series. The highest loss occurred in 2013 by the original series, but changed in 1996 according to the three normalized series, with an obvious abruption. However, a common feature of 2~3 year oscillation is found. Zhejiang, Guangdong and Fujian provinces rank the top three in all of the four loss series; (4) Herb (1996) is the severest tropical cyclone among the ten worst ITCs during the past 31 years, whereas the order of other single cyclones depends on the normalization method used.-
Key words:
- Influential Tropical Cyclones (ITCs) /
- variation /
- normalized economic losses /
- CPI /
- CNM /
- ANM
-
表 1 1984—2014年影响气旋和登陆气旋等级与频数的各年代变化 单位:个。
类型 等级 1984—1990年 1991—2000年 2001—2014年 总计 登陆气旋 TD 7 5 5 17 TS 6 13 25 44 STS 25 28 22 75 TY 15 20 33 68 STY 1 3 12 16 SuperTY 2 2 影响气旋 TD 8 6 7 21 TS 7 13 29 49 STS 25 29 23 77 TY 15 21 35 71 STY 2 4 16 22 SuperTY 3 3 表 2 1984—2014年十大影响气旋直接经济损失(亿元)排序
年份 编号 中文名称 英文名称 年值 CPI标准化 CNM标准化 ANM标准化 损失 排名 损失 排名 损失 排名 损失 排名 1996 9608 赫伯 Herb 652.7 1 923.3 1 4 415.0 1 3 384.2 1 2013 1323 菲特 Fitow 631.4 2 644.1 2 713.9 5 631.4 5 2012 1209 & 1210 苏拉 & 达维 Saola & Damrey 511.5 3 535.5 4 673.1 6 571.4 6 2014 1409 威马逊 Rammasum 446.5 4 446.5 6 446.5 8 401.6 8 1997 9711 温尼 Winnie 436.3 5 599.9 3 2 669.8 2 2 094.7 2 2012 1211 海葵 Haikui 375.9 6 393.5 7 494.6 7 419.9 7 2006 0604 碧利斯 Bilis 348.8 7 449.8 5 1 088.3 4 794.6 4 2013 1319 天兔 Usagi 264.0 8 269.3 9 298.5 9 264.0 9 1996 9615 莎莉 Sally 218.6 9 309.3 8 1 478.9 3 1 133.6 3 2013 1311 尤特 Utor 215.0 10 219.3 10 243.1 10 215.0 10 -
[1] 中国气象局.中国气象灾害年鉴2014[M].北京:气象出版社, 2013. [2] 赵珊珊, 任福民, 高歌, 等.近十年我国热带气旋灾害的特征研究[J].热带气象学报, 2015, 31(3): 424-432. [3] STOCKER T F, QIN D, PLATTNER G K, et al. Climate change 2013: The physical science basis[J]//Intergovernmental Panel on Climate Change, Working Group I Contribution to the IPCC Fifth Assessment Report(AR5). Cambridge: Cambridge University Press, 2013. [4] WEBSTER P J, HOLLAND G J, CURRY J A, et al. Changes in tropical cyclone number, duration and intensity in a warming environment[J]. Science, 2005, 309(5742): 1844-1846. [5] EMANUEL K A. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century[J]. Proceedings of the National Academy of Sciences, 2013, 110(30): 12219-12224. [6] WU L, TIAN W, LIU Q, et al. Implications of the observed relationship between tropical cyclone size and intensity over the Western North Pacific[J]. J Clim, 2015, 28(24): 9501-9506. [7] MOON I J, KIM S H, WANG C. El Nino and intense tropical cyclones[J]. Nature, 2015, 526(7575): E4-E5. [8] XIAO F J, XIAO Z N. Characteristics of tropical cyclones in China and their impacts analysis[J]. Natural Hazards, 2010, 54(3): 827-837. [9] 赵飞, 廖永丰, 张妮娜, 等.登陆中国台风灾害损失预评估模型研究[J].灾害学, 2011, 26(2): 81-85. [10] 中国气象局气候变化中心.中国气候变化监测公报2014[M].北京:气象出版社, 2015. [11] KRON W, STEUER M, LÖW P, et al. How to deal properly with a natural catastrophe database analysis of flood losses[J]. Natural Hazards and Earth System Sciences, 2012, 12(3): 535-550. [12] CRED, Centre for Research on the Epidemiology of Disasters. EM-DAT: the OFDA/CRED International Disaster Database[DB/OL]. http://www.emdat.be/database. [13] MUNICH RE. Munich Re NatCatSERVICE[DB/OL]. http://www.munichre.com/en/reinsurance/business/non-life/natcatservice/index.html. [14] 中国气象科学数据共享服务网[DB/OL]. http://www.cma.gov.cn/2011qxfw/2011qsjgx/. [15] 中华人民共和国民政部.中国减灾[M].北京:中国减灾编辑部. [16] 李倩, 张韧, 姚雪峰, 等.气候变化背景下我国周边海域热带气旋灾害风险评估与区划[J].热带气象学报, 2013, 29(1): 143-148. [17] 张颖超, 仲丽君.基于灰关联和回归分析的台风灾害损失研究与分析[J].热带气象学报, 2013, 29(4): 665-671. [18] 牛海燕, 刘敏, 陆敏, 等.中国沿海地区台风灾害损失评估研究[J].灾害学, 2011, 26(3): 61-64. [19] 陈佩燕, 杨玉华, 雷小途, 等.我国台风灾害成因分析及灾情预估[J].自然灾害学报, 2009, 18(1): 64-73. [20] 雷小途, 陈佩燕, 杨玉华, 等.中国台风灾情特征及其灾害客观评估方法[J].自然灾害学报, 2009, 18(5): 875-883. [21] ZHANG Q, WU L G, LIU Q. Tropical cyclone damages in China: 1983-2006[J]. Bull Amer Meteor Soc, 2009, 90(4): 489-495. [22] 张娇艳, 吴立广, 张强.全球变暖背景下我国热带气旋灾害趋势分析[J].热带气象学报, 2011, 27(4): 442-454. [23] 殷洁, 戴尔阜, 吴绍洪, 等.中国台风强度等级与可能灾害损失标准研究[J].地理研究, 2013, 32(2): 266-274. [24] PIELKE R A Jr, LANDSEA C W. Normalized hurricane damages in the United States: 1925-95[J]. Wea Forecasting, 1998, 13(3): 621-631. [25] NEUMAYER E, BARTHEL F. Normalizing economic loss from natural disasters: A global analysis[J]. Global Environmental Change, 2011, 21(1): 13-24. [26] FISCHER T, SU B D, WEN S S. Spatio-temporal analysis of economic losses from tropical cyclones in affected provinces of China for the last 30 years (1984-2013)[J]. Natural Hazards Review, 2015, 16(4): 04015010. [27] 国家统计局. 中国统计年鉴[J]. 北京: 中国统计出版社, 2015. [28] 张鹤, 张代强, 姚远, 等.货币政策透明度与反通货膨胀[J].经济研究, 2009, 7: 55-64. [29] KENDALL M, GIBBONS J. Rank correlation methods[M]. New York: Oxford University Press, 1990: 1-260 [30] 符淙斌, 王强.气候突变的定义和检测方法[J].大气科学, 1992, 16(4): 482-493. [31] SCHULZ M, MUDELSEE M. REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series[J]. Computers & Geosciences, 2002, 28(3): 421-426. [32] GEMMER M, YIN Y Z, LUO Y, et al. Tropical cyclones in China--county-based analysis of landfalls and economic losses in Fujian Province[J]. Quat Int, 2011, 244(2): 169-177. [33] ESTRADA F, BOTZEN W J W, TOL R S J. Economic losses from US hurricanes consistent with an influence from climate change[J]. Nature Geoscience, 2015, 8: 880-884. [34] SCHMIDT S, KEMFERT C, HÖPPE P. The impact of socio-economics and climate change on tropical cyclone losses in the USA[J]. Regional Environmental Change, 2010, 10(1): 13-26.