THE DIAGNOSTIC ANALYSIS AND NUMERICAL EXPERIMENT ABOUT THE EFFECT OF TYPHOON DANAS(1324) ON TYPHOON FITOW(1323)
-
摘要: 利用FNL资料和WRF模式进行数值试验,并在此基础上研究了1324号台风Danas对1323号台风Fitow的影响特征。分析结果表明,台风Fitow登陆前、后的强度变化及其东边界与台风Danas相连的水汽输送通道的变化直接相关。台风Fitow登陆前,其水汽输入主要是由副热带高压西南侧环境场的偏东气流带来,而上游台风Danas截取了环境场输送给台风Fitow的水汽,抑制了Fitow的发展。但在台风Fitow登陆后,台风Danas环境场的水汽反过来起到转运作用,增加了Fitow的水汽收入,加剧其北侧的强降水。台风Danas以水汽通道为纽带影响台风Fitow登陆前的强度和在陆上非对称降水的分布。此外,台风Danas的北上影响了副热带高压的强度,使其东退且改变台风Fitow的引导气流,影响了Fitow的登陆位置;并在Fitow登陆后施加了偏南引导气流,令其逆时针打转。Abstract: In recent years, some binary tropical cyclones often bring serious disasters to the affected areas, so the interaction between the two typhoons has received more and more attention.The effect of typhoon Danas(1324) on the typhoon Fitow(1323) was studied with the FNL data and WRF model.The results show that the intensity of the change of Fitow while before and after landing is directly related to the change of the eastern boundary water vapor transport channel, which link with Danas.Before Fitow landing, the water vapor channel is mainly caused by the environment field easterly stream on the southwest side of the subtropical high.Danas at the upstream intercepts environmental field delivering water vapor to Fitow and inhibited its development. However, Fitow after landing, Danas on the environment of the water vapor in turn plays a role in the transport, increasing the Fitow of the water vapor income, and increasing its north side of the strong precipitation.Danas, through water vapor as a link, affect the intensity of Fitow before its landing and Fitow's asymmetric precipitation distribution onshore.In addition, Danas's northward movement affects the intensity of subtropical high, causing the subtropical high's east back, changing Fitow's steer flow, affecting the Fitow landing position, and Fitow's counterclockwise spinning around the landing by applying the southward steer flow.
-
图 3 同图 2,但为整层的水汽输送方向(箭头)和水汽通量(填色)分布
单位:g/(m·s)。
图 8 同图 7,但为整层水汽通量
单位:g/(m·s)。
表 1 Fitow和Dannas的相对位置
时间/UTC 间距/km 经度差/°E 纬度差/°N 4日12时 1 763.53 15.6 6.1 4日18时 1 726.28 15.4 5.8 5日00时 1 657.61 14.6 6.1 5日06时 1 574.58 13.8 6.0 5日12时 1 527.97 13.6 5.5 5日18时 1 472.95 13.3 5.0 6日00时 1 393.98 12.7 4.6 6日06时 1 297.43 12.0 4.0 6日12时 1 262.68 11.7 4.0 6日18时 1 204.86 11.5 3.1 7日00时 1 155.29 11.4 1.7 7日06时 1 094.14 11.0 0.1 -
[1] FUJIWHARA S. The natural tendency towards symmetry of motion and its application as a principle in meteorology[J]. Q J Roy Meteorolog Soc, 1921, 47(200): 287-292. [2] FUJIWHARA S. On the growth and decay of vortical systems[J]. Q J Roy Meteorolog Soc, 1923, 49(206): 75-104. [3] BRAND S. Interaction of binary tropical cyclones of the western North Pacific Ocean[J]. J Appl Meteorol, 1970, 9(3): 433-441. [4] 包澄澜, 阮均石, 朱跃建.双台风互旋与引导气流关系的研究[J].海洋学报, 1985, 7(6): 696-705. [5] CHEN L, MENG Z. An Overview on tropical cyclone research progress in China during the past ten years[J]. Chinese J Atmos Sci, 2001, 25(3): 420-432. [6] PRIETO R, MCNOLDY B D, FULTON S R, et al. A classification of binary tropical cyclone-like vortex interactions[J]. Mon Wea Rev, 2003, 131(11): 2656-2666. [7] YANG C C, WU C C, CHOU K H, et al. Binary interaction between typhoons Fengshen(2002) and Fungwong(2002) based on the potential vorticity diagnosis[J]. Mon Wea Rev, 2008, 136(12): 4593-4611. [8] WU X, FEI J, HUANG X, et al. A numerical study of the interaction between two simultaneous storms: Goni and Morakot in september 2009[J]. Adv Atmosp Sci, 2012, 29(3): 561-574. [9] XU H, ZHANG X, XU X. Impact of tropical storm bopha on the intensity change of super typhoon Saomai in the 2006 typhoon season[J]. Adv Meteorol, 2015: 6647-6662. [10] 李媛. 一次热带气旋远距离暴雨过程形成机理的数值研究[D]. 南京: 南京信息工程大学, 2013. [11] 王宏伟. 一次梅雨期台风远距离暴雨过程的分析研究[D]. 南京: 南京大学, 2013. [12] 李强, 刘德, 王中, 等.一次台风远距离作用下的西南低涡大暴雨个例分析[J].高原气象, 2013, 32(3): 718-727. [13] 徐洪雄, 徐祥德, 张胜军, 等.台风韦森特对季风水汽流的"转运"效应及其对北京"7·21"暴雨的影响[J].大气科学, 2014, 38(3): 537-550. [14] XU X, LU C, XU H, et al. A possible mechanism responsible for exceptional rainfall over Taiwan from Typhoon Morakot[J]. Atmosp Sci Lett, 2011, 12(3): 294-299. [15] 丁治英, 邢蕊, 徐海明, 等.多台风的相互作用和水平涡度与垂直涡度的关系[J].热带气象学报, 2014, 30(5): 825-835. [16] 李英, 陈联寿, 王继志.登陆热带气旋长久维持与迅速消亡的大尺度环流特征[J].气象学报, 2004, 62(2): 167-179. [17] 李英, 陈联寿, 王继志.热带气旋登陆维持和迅速消亡的诊断研究[J].大气科学, 2005, 29(3): 482-490. [18] 文永仁, 魏娜, 张雪蓉, 等. 1323号强台风菲特登陆后迅速衰亡的原因分析[J].气象, 2014, 40(11): 1316-1323. [19] 娄小芬, 楼茂园, 罗玲, 等. "菲特"台风路径和强度预报难点分析[J].海洋预报, 2015, 32(1): 10-19. [20] 胡润杰, 李莹, 李侠丽, 等. 1323号台风"菲特"路径及降水分析[J].中国农学通报, 2015, 31(24): 237-241. [21] 周福, 钱燕珍, 朱宪春, 等. "菲特"减弱时浙江大暴雨过程成因分析[J].气象, 2014, 40(8): 930-939. [22] XU H, DU B. The impact of Typhoon Danas(2013) on the torrential rainfall associated with Typhoon Fitow (2013) in East China[J]. Adv Meteorol, 2015: 1-11. [23] FREDRICK S, DAVIS C, GILL D, et al. Bogussing of tropical cyclones in WRF version 3.1[C]//Abstract of Workshop. 2009.