A COMPARATIVE ANALYSIS OF CLOUD STRUCTURE AND ASSOCIATED HEATING MECHANISM IN THE TIBETAN PLATEAU, THE EAST ASIAN MONSOON REGION AND THE NORTHWESTERN PACIFIC
-
摘要: 应用7年(2006年5月18日—2013年5月18日)的CloudSat卫星观测资料,对比分析了青藏高原、东亚季风区、西北太平洋地区云发生频率的特征,并利用欧洲中心再分析资料,计算了三个地区的视热源、视水汽汇Q1、Q2,分析探讨了三个地区与云发生频率相联系的加热机制。结果表明:青藏高原、东亚季风区、西北太平洋地区云的发生频率分别为35%、22%、27%,其中:青藏高原和东亚季风区的低云频率最大,中云次之;西北太平洋地区的高云和低云的频率大,分别为19%和16%。具体云型来看,青藏高原多高层云、雨层云;东亚季风区多高层云和卷云,夏季深对流云频率增大明显;西北太平洋地区多卷云、深对流云和高层云。三个地区视水汽汇Q2的垂直分布特征及季节变化与云发生频率对应较好,青藏高原的低云(雨层云)、中云(高层云)形成过程中,凝结释放潜热,加热大气;东亚季风区低云(深对流云)、中云(高层云)对加热大气贡献大;西北太平洋地区大气的主要加热机制是深对流云形成过程中凝结释放潜热以及湿静能涡旋垂直输送。Abstract: Based on 7-year (May 18, 2006~May 18, 2013) CloudSat observations, characteristics of occurrence frequencies of clouds in the Tibetan Plateau, the East Asian monsoon region and the Northwestern Pacific are compared. Moreover, apparent heat source (Q1) and apparent moisture sink (Q2) are calculated for the same period by making use of the ERA-Interim reanalysis dataset. With the heat sources (Q1) and moisture sinks (Q2) profiles over the three regions, heating mechanisms associated with cloud frequency are discussed. Results show that the frequency of cloud occurrences in the Tibetan Plateau (TP), the East Asian monsoon region (EA) and the Northwestern Pacific (WNP) is 35%, 22% and 27%, respectively. Among low, middle and high clouds, the highest frequency in the TP and the EA is low clouds, followed by middle clouds. In the NWP the frequency of high and low cloud is higher than that of middle clouds, close to 19% and 16%, respectively. In terms of the type of cloud and annual mean, there is a large amount of Nimbostratus and Altostratus over the TP and much cirrus in the EA with significantly frequent deep convective clouds in summer. On the other hand, cirrus, deep convective clouds and Altostratus are dominating in the WNP. The vertical distribution and seasonal variation of moisture sink (Q2) are well corresponding to cloud frequency in the three regions. Over the TP, the atmospheric heating by condensing water vapor and releasing latent heat is mainly due to low clouds (Nimbostratus) and middle clouds (Altostratus) formation. In the EA, low clouds (deep convection) and middle clouds (Altostratus) are making much more contribution to the heating than the others. In the WNP, atmospheric heating largely comes from deep convective cloud which is condensing water vapor and releasing latent heat with vertical transport of eddy moist static energy.
-
[1] RIEHL H, MALKUSJ S. Some aspects of hurricane Daisy, 1958[J]. Tellus, 1961, 13(2): 181-213. [2] YANAI M. Formation of tropical cyclones[J]. Rev Geophys, 1964, 2(2): 367-414. [3] WARREN S G, HAHN C J, CHERVIN R M, et al.Global distribution of total cloud cover and cloud type amounts over land[R]. NCAR Tech. Note, NCAR/TN-273+STR, 1986(10): 29. [4] MINNIS P, HECK P W, YOUNG D F, et al. Stratocumulus cloud properties derived from simultaneous satellite and island-based instrumentation during fire[J]. JAppl Meteo, 1992, 31(4): 317-339. [5] YU R C, YU Y Q, ZHANG M H. Comparing cloud radiative properties between the Eastern China and the Indian monsoon region[J]. Adv Atmos Sci, 2001, 18(6): 1090-1102. [6] 刘洪利, 朱文琴, 宜树华, 等.中国地区云的气候特征分析[J].气象学报, 2003, 61(4): 466-475. [7] 刘瑞霞, 刘玉洁, 杜秉玉.利用ISCCP资料分析青藏高原云气候特征[J].南京气象学院学报, 2002, 25 (2): 226-232. [8] SASSEN K, WANG Z. Classifying clouds around the globe with the CloudSat radar: 1-year of results. Geophys[J]. Res Lett, 2008, 35: L04805(1-5). [9] LUO Y I, ZHANG R H, WANG H.Comparing occurrences and vertical structures of hydrometeors between the eastern China and the Indian monsoon region using CloudSat(CALIPSO) data[J]. JClim, 2009, 22(2): 1052-1064. [10] 汪会, 罗亚丽, 张人禾, 等.用CloudSat/CALIPSO资料分析亚洲季风区和青藏高原地区云的季节变化特征[J].大气科学, 2011, 35(6): 1117-1131. [11] 陈葆德, 梁萍, 李跃清, 等.青藏高原云的研究进展[J].高原山地气象研究, 2008, 28(1): 66-71. [12] 魏丽, 钟强.青藏高原云的气候学特征[J].高原气象, 1997, 16(1): 10-15. [13] 李昀英, 宇如聪, 徐幼平, 等.中国南方地区层状云的形成和日变化特征分析[J].气象学报, 2003, 61(6): 733-743. [14] 王胜杰, 何文英, 陈洪滨, 等.利用CloudSat资料分析青藏高原、高原南坡及南亚季风区云高度的统计特征量[J].高原气象, 2010, 29(1): 1-9. [15] 赵艳风, 王东海, 尹金方, 等.基于CloudSat资料的青藏高原地区云微物理特征分析[J].热带气象学报, 2014, 30(2): 239-248. [16] YANAI M, JOHNSON R H. Impacts of cumulus convection on thermodynamic fields(the representation of cumulus convection in numerical modelsof the atmosphere: Chapter 4)[M]. Amer Meteor Soc, 1993, 46(1): 39-62. [17] YANAI M, TOMOHIKO T. Seasonal and interannual variability of atmospheric heat sources and moisture sinks as determined from NCEP-NCAR reanalysis[J]. J Clim, 1998, 11(3): 463-482. [18] 江宁波, 罗会邦.亚洲季风区大气热源和水汽汇的季节内变化[J].热带气象学报, 1993, 9(4): 299-307. [19] 王黎娟, 温敏, 罗玲, 等.西太平洋副高位置变动与大气热源的关系[J].热带气象学报, 2005, 21(5): 488-495. [20] 罗凝谊, 周加红, 方敏, 等.东亚大气热源的气候学特征分析[J].高原山地气象研究, 2014, 34(4): 83-86. [21] 王群, 郭品文, 周宏伟, 等.春季青藏高原地区大气热源的气候特征分析[J].气象科学, 2011, 31(2): 179-186. [22] YANAI M, ESBENSEN S, CHU J H.Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets[J]. J Atmos Sci, 1973, 30(4): 611-627.