OBSERVATIONAL ANALYSIS ON WINTER TURBULENCE FEATURE OVER SHRUB ECOSYSTEM IN ZENGCHENG HILLY REGION
-
摘要: 介绍了广州增城丘陵灌木林通量站的地理环境、仪器布设,并利用该站2014年12月—2015年2月的观测资料,分析冬季华南丘陵灌木林下垫面近地层的风、温度、气压、湿度和大气稳定度等基本气象要素特征,以及湍流强度、风速归一化标准差的统计特征及通量特征。结果表明:(1)冬季增城站以北向小风为主,风速多小于4 m/s,日平均温度变化剧烈,平均相对湿度为67.94%;(2)大气稳定度集中于“±” 0.5之间,以近中性为主;冬季平均湍流强度Iu、Iv和Iw分别为0.37、0.31和0.19;在风速小于1 m/s时湍流发展旺盛,随风速增大,湍流强度减小并趋于稳定;(3)风速分量归一化标准差δu/u*、δv/u*、δw/u*与稳定度Z/L之间满足莫宁-奥布霍夫相似理论,并呈1/3次方关系,且随|Z/L|的减小而减小,在中性层结(Z/L→0)均匀下垫面,其值为常数,分别为2.286、1.757和1.174;(4)冬季增城站的能量耗散以感热为主,晴天尤为显著;阴天感热与潜热大小相当;平均日间吸收CO2极值为0.236 mg/(m2·s)。Abstract: A brief introduction of a Zengcheng land-surface processes observation tower is given, including the equipment and geographical environment. Based on the turbulence data collected from December 2014 to February 2015 the basic micrometeorological characteristics such as wind direction, atmospheric stability, turbulence intensity etc. in the near-surface layer were investigated. The results show that: (1) The observation tower is under small northerly wind condition in winter with high amplitude of temperature variation; (2) The distribution of atmospheric stability is concentrated in ±0.5 and mainly near 0; Turbulence is active when the wind velocity is lower than 1 m/s, the intensity of turbulence will decrease with the increase of wind speed until it becomes a constant; (3) The normalized standard deviation of wind velocity components generally meet the 1/3 power low with Z/L and has the synchronous changes with |Z/L|, when |Z/L|→0, δu /u*、δv /u*、δw /u* tend to be constant; (4) Sensible heat flux is the leading energy consumption of in winter, especially in sunny days; the maximum average diurnal absorption of CO2 is 0.236 mg/m2·s).
-
Key words:
- Zengcheng /
- shrub ecosystem /
- turbulent characters /
- diurnal variation /
- winter
-
表 1 不同时段湍流强度的均值和频次分布峰值对应的强度
物理量 平均湍流强度 频次分布峰值对应湍流强度 冬季 白天 夜间 冬季 白天 夜间 Iu 0.37 0.43 0.31 0.26 0.38 0.26 Iv 0.31 0.36 0.25 0.18 0.28 0.20 Iw 0.19 0.23 0.15 0.14 0.14 0.12 -
[1] ICSU-WMO-IOC-IGFA. Review of the world climate research program (WCRP)[M]. Paris: International Council for Science, 2009: 1-40. [2] ICSU-IGFA. Review of the International Geosphere-Biosphere Program (IGBP)[M]. Paris: International Council for Science, 2009: 1-57. [3] ANDRE J C, GOUTORBE J P, PERRIER A. HAPEX-MOBILHY: A hydrologic atmospheric experiment for the study of water budget and evaporation flux at the climate scale[J]. Bull Amer Meteor Soc, 1986, 67(2): 128-144. [4] SELLLERS P J, ASRAR F G, STREBEL D E, et al. The first ISLSCP field experiment(FIFE)[J]. Bull Amer Meteor Soc, 1988, 69(1): 22-27. [5] 胡隐樵, 高由禧, 王介民, 等.黑河实验(HEIFE)的一些研究成果[J].高原气象, 1994, 13(3): 225-236. [6] 黄荣辉, 周德刚, 陈文, 等.关于中国西北干旱区陆-气相互作用及其对气候影响的研究的最近进展[J].大气科学, 2013, 37(2): 189-210. [7] 陈海山, 孙照勃.陆气相互作用及陆面模式的研究进展[J].南京气象学院学报, 2002, 25(2): 277-287. [8] ZHOU G, HOULTON B Z, WANG W, et al. Substantial reorganization of China's tropical and subtropical forests: Based on the permanent plots[J]. Glob Chang Biol, 2014, 20(1): 240-250. [9] 韦志刚, 胡嘉骢, 董文杰, 等.珠海凤凰山陆气相互作用与碳通量观测塔的基本观测及晴天主要观测量的日变化特征[J].大气科学, 2016, 40(2): 423-436. [10] BI X, GAO Z, DENG X, et al. Seasonal and diurnal variations in moisture, heat, and CO2 fluxs over grassland in the tropical monsoon region of southern China[J]. J Geophys Res, 2007, 112, D10106, doi: 10.1029/2006JD007889. [11] 徐玉貌, 周朝辅, 李振华, 等.广州市近地层大气的湍流微结构和谱特征[J].大气科学, 1993, 17(3): 338-348. [12] 周洋, 蔡蕊, 陆杰英.广州市区与增城市气象要素差异性分析[J].广东气象, 2014, 36(6): 44-49. [13] http://www.geos.ed.ac.uk/homes/rclement/micromet/EdiRe/. [14] 王介民. 涡动相关通量观测指导手册(Ver. 20120212)http://hiwater.westgis.ac.cn/article.asp?pid=7&id=14. [15] WEBB E K, PEARMAN G I, LEUNING R. Correction of flux measurements for density effects due to heat and water vapour transfer[J]. Q J Roy Meteor Soc, 1980, 106(447): 85-100. [16] FOKEN T, GÖOCKEDE M, MAUDER M, et al. Post-Field data quality control handbook of micrometeorology[M]//Handbook of micrometeorology: A guide for surface flux measurement and analysis. Dordrecht: Kluwer Academic Publishers, 2004: 181-208. [17] FOKEN T, WICHURA B. Tools for quality assessment of surface-based flux measurements[J]. Agr Forest Meteorol, 1996, 78(1-2): 83-105. [18] MONIN A S, OBUKHOV A M. Basic laws of turbulent mixing in the atmosphere near the ground[J]. Tr Akad Nauk SSSR Geofiz Inst, 1954, 24(151): 163-187. [19] PANOFSKY H A, TENNEKES H, LENSCHOW D H, et al. The characteristics of turbulent velocity components in the surface layer under convective conditions[J]. Bound-Layer Meteor, 1997, 11(3): 355-361. [20] ANDREAS E, HILL R J, GOSZ J R, et al. Statistics of surface-layer turbulence over terrain with metre-scale heterogeneity[J]. Bound-Layer Meteor, 1998, 86(3): 379-408. [21] CHOI T J, HONG J K, KIM J, et al. Turbulent exchange of heat, water vapor, and momentum over a Tibetan prairie by eddy covariance and flux variance measurements[J]. J Geophys Res, 2004, 109, D21106, doi:10.1029/2004JD004767. [22] 盛裴轩, 毛节泰, 李建国, 等.大气物理学[M].北京:北京大学出版社, 2003: 87-260. [23] 赵鸣, 苗曼倩, 王彦昌.边界层气象学教程[M].北京:气象出版社, 1991: 74-126. [24] ALVES M D C, SANCHES L, NOGUEIRA J D S, et al. Effects of sky conditions measured by the clearness index on the estimation of solar radiation using a digital elevation model[J]. Atmos Clim Sci, 2013, 3(4): 618-626. [25] 初小静, 韩广轩, 邢庆会, 等.阴天和晴天对黄河三角洲芦苇湿地净生态系统CO2交换的影响[J].植物生态学报, 2015, 39(7): 661-673. [26] NEWLAND F J. A study of solar radiation models for the coastal region of South China[J]. Sol Energy, 1989, 43(4): 227-235. [27] LAM J C, LI D H W. Correlation between global solar radiation and its direct and diffuse components[J]. Build Environ, 1996, 31(6): 527-535. [28] DE MIGUEL A, BILBAO J, AGUIAR R, et al. Diffuse solar irradiation model evaluation in the North Mediterranean Belt area[J]. Sol Energy, 2001, 70(2): 143-153. [29] 郭建侠, 卞林根, 戴永久, 等.在华北玉米生育期观测的16m高度CO2浓度及通量特征[J].大气科学, 2007, 31(4): 695-707. [30] 蒋迪, 黄菲, 黄健.华南海岸带近地层湍流参数观测研究[J].中国海洋大学学报, 2013, 43(12): 7-15.