THE CHARACTERISTICS OF SUMMER PERSISTENT RAINFALL OVER YANGTZE-HUAIHE RIVER VALLEY AND ITS RELATIONSHIP WITH THE EAST ASIAN JET STREAMS
-
摘要: 围绕1960—2011年江淮地区夏季持续性降水展开对单站和区域性持续4 d及以上降水的分析,并探讨其与东亚高空急流的联系。研究发现,近年来持续4 d及以上降水的频数有增多趋势,且在江淮地区其影响范围有逐渐扩大的趋势。持续4 d及以上单站降水频数EOF分析的前两个模态均与极锋急流和陆上副热带急流的协同作用有关。当极锋急流北移和陆上副热带急流南移时,冷暖空气易在江淮地区的西北部相遇,利于较长持续时间的单站降水在该地区发生,易于导致第一模态的全场一致变化。与第二模态相关的高空急流配置表现为陆上副热带急流的减弱和极锋急流的增强,两支急流的强弱配置通过影响水汽输送和上升运动导致江淮地区形成南湿北干的异常型。进一步研究了江淮地区持续4 d及以上区域性降水与急流协同作用的关系发现,在事件发生之前极锋急流显著增强,副热带急流略有增强。伴随着两支急流的变化,西北太平洋副热带高压和北风产生持续性异常,利于冷暖空气活动,导致持续时间较长的区域性降水发生Abstract: Based on the summer persistent rainfall over the Yangtze-Huaihe River Basin (YHRB) during 1960—2011, the characteristics of both the individual-station-based and regional persistent rainfall and the relationship between the East Asian jet streams are investigated in this study. With focus on the long-duration precipitation (4d and above), the results indicate that the frequency has increased and the impact stations have expanded in recent years. Both the concurrent variation of the EASJ and the East Asian Polar Front jet stream (EAPJ) have contributed to the first two modes of EOF. Associated with the polar-ward (equator-ward) shift of the EAPJ (EASJ), the cold-dry air and warm-humid air may converge over YHRB and easily trigger the long-persistent precipitation. For the EOF2, the strengthened EAPJ and weakened EASJ may result in the southern-flood-northern-drought precipitation anomaly, via the water vapor and ascending motion. We further investigate the longer regional persistent precipitation. Nearly 7 days precedent of the precipitation onset, the EAPJ and EASJ significantly enhance, particularly for the EAPJ. Consequently, the persistent western Pacific subtropical high and north wind anomalies may benefit the warm-humid and cold-dry air activities, and therefore sustain the precipitation
-
Key words:
- climatology /
- persistent rainfall /
- East Asian Jet Stream /
- cold-warm air
-
图 10 同图 8,但为500 hPa位势高度场副高的西伸脊点位置的逐日(单位:d)演变
图 11 同图 8,但为850 hPa沿110~122 °E平均的经向风的逐日-纬度剖面
两条红色实线之间的区域为江淮地区的纬度范围28~34 °N。
表 1 1960—2011年江淮地区发生的20次夏季持续4 d及以上的区域性降水事件的情况
事件编号 年份 起始时间(月-日) 终止时间(月-日) 持续天数/d 1 1962 6-16 6-19 4 2 1969 7-6 7-9 4 3 1970 6-18 6-21 4 4 1971 6-1 6-4 4 5 1973 6-16 6-20 5 6 1975 6-30 7-3 4 7 1980 6-17 6-20 4 8 1980 8-17 8-21 5 9 1982 8-20 8-23 4 10 1984 6-12 6-15 4 11 1987 7-1 7-4 4 12 1988 6-16 6-19 4 13 1989 6-15 6-18 4 14 1991 6-2 6-5 4 15 1994 6-7 6-10 4 16 1996 6-2 6-5 4 17 1999 6-26 6-30 5 18 2000 6-21 6-24 4 19 2002 8-14 8-17 4 20 2008 8-14 8-17 4 -
[1] 刘学华, 季致建, 吴洪宝, 等.中国近40年极端气温和降水的分布特征及年代际差异[J].热带气象学报, 2006, 22(6): 618-624. [2] 王志福, 钱永甫.中国极端降水事件的频数和强度特征[J].水科学进展, 2009, 20(1): 1-9. [3] 伍荣生.现代天气学原理[M].北京:高等教育出版社, 1999: 2. [4] 邹进上, 江静, 王梅华, 等.高空气候学[M].北京:气象出版社, 1990: 200-212. [5] HUDSON R D. Measurements of the movement of the jet streams at mid-latitudes, in the Northern and Southern Hemispheres, 1979 to 2010[J]. Atmos Chem Phys, 2012, 12(16): 7797-7808, doi:10.5194/acp-12-7797-2012. [6] 陆日宇, 林中达, 张耀存.夏季东亚高空急流的变化及其对东亚季风的影响[J].大气科学, 2013, 37(2): 331-340. [7] 孙凤华, 张耀存, 郭兰丽.中国东部夏季降水与同期东亚副热带急流年代际异常的关系[J].高原气象, 2009, 28(6): 1308-1315. [8] 况雪源, 张耀存.东亚副热带西风急流位置异常对长江中下游夏季降水的影响[J].高原气象, 2006, 25(3): 382-389. [9] LIANG X Z, WANG W C. Association between China monsoon rainfall and troposphereic jets[J]. Quart J Roy Met Soc, 1988, 124(522): 2597-2623. [10] LACHMY O, HARNIK N. The transition to a subtropical jet regime and its maintenance[J]. J Atmos Sci, 2014, 71(4): 1389-1409. [11] 况雪源, 张耀存.东亚副热带西风急流季节变化特征及其热力影响机制探讨[J].气象学报, 2006, 64(5): 564-575. [12] ZHANG Y, KUANG X, GUO W, et al. Seasonal evolution of the upper-tropospheric westerly jet core over East Asia[J]. J Geophys Res Lett, 2006, 33(11), L11708, doi:10.1029/2006GL026377. [13] 任雪娟, 杨修群, 周天军, 等.冬季副热带急流与极锋急流的比较分析:大尺度特征和瞬间扰动活动[J].气象学报, 2010, 68(1): 1-11. [14] 张耀存, 王东阡, 任雪娟.东亚高空极锋急流区经向风的季节变化及其与亚洲季风的关系[J].气象学报, 2008, 66(5): 707-715. [15] HUANG D, ZHU J, ZHANG Y C, et al. The different configurations of the East Asian polar front jet and subtropical jet and the associated rainfall anomalies over Eastern China in Summer[J]. J Clim, 2014, 27(21): 8205-8220, doi:10.1175/JCLI-D-14-00067.1. [16] HUANG D Q, ZHU J, ZHANG Y C, et al. The impact of the East Asian subtropical jet and polar front jet on the frequency of spring persistent rainfall over Southern China in 1997—2011[J]. J Clim, 2015, 28(15): 6054-6066, doi:10.1175/JCLI-D-14-00641.1. [17] LI L, ZHANG Y C. Effects of different configurations of the East Asian subtropical and polar front jets on precipitation during Meiyu season[J]. J. Clim, 2014, 27(17): 6660-6672, doi:10.1175/JCLI-D-14-00021.1. [18] LIAO Z J, ZHANG Y C. Concurrent variation between the East Asian subtropical jet and polar front jet during persistent snowstorm period in 2008winter over southern China[J]. J Geophys Res Atmos, 2013, 118(12): 6360-6373, doi:10.1002/jgrd.50558. [19] LUO X, ZHANG Y C. The linkage between upper-level jet streams over East Asia and East Asian winter monsoon variability[J]. J Clim, 2015, 28(22): 9 013-9 028, doi:10.1175/JCLI-D-15-0160.1. [20] KALNAY E, KANAMITUS M, KISTLER R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bull Am Meteorol Soc, 1996, 77(3): 437-471. [21] 黄嘉佑.气象统计分析与预报方法(第三版)[M].北京:气象出版社, 1990: 392.