ISSN 1004-4965

CN 44-1326/P

用微信扫描二维码

分享至好友和朋友圈

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气溶胶直接效应对一次降水影响的机理分析

杨桃进 刘宇迪

杨桃进, 刘宇迪. 气溶胶直接效应对一次降水影响的机理分析[J]. 热带气象学报, 2017, 33(5): 762-773. doi: 10.16032/j.issn.1004-4965.2017.05.019
引用本文: 杨桃进, 刘宇迪. 气溶胶直接效应对一次降水影响的机理分析[J]. 热带气象学报, 2017, 33(5): 762-773. doi: 10.16032/j.issn.1004-4965.2017.05.019
Tao-jin YANG, Yu-di LIU. MECHANISM ANALYSIS OF THE IMPACTS OF AEROSOL DIRECT EFFECTS ON A RAINSTORM[J]. Journal of Tropical Meteorology, 2017, 33(5): 762-773. doi: 10.16032/j.issn.1004-4965.2017.05.019
Citation: Tao-jin YANG, Yu-di LIU. MECHANISM ANALYSIS OF THE IMPACTS OF AEROSOL DIRECT EFFECTS ON A RAINSTORM[J]. Journal of Tropical Meteorology, 2017, 33(5): 762-773. doi: 10.16032/j.issn.1004-4965.2017.05.019

气溶胶直接效应对一次降水影响的机理分析

doi: 10.16032/j.issn.1004-4965.2017.05.019
基金项目: 

国家自然科学基金 41175089

详细信息
    通讯作者:

    刘宇迪,男,内蒙古自治区人,副教授,博士生导师,主要从事大气动力学与数值模拟研究。E-mail:ydliu0509@163.com

  • 中图分类号: P435

MECHANISM ANALYSIS OF THE IMPACTS OF AEROSOL DIRECT EFFECTS ON A RAINSTORM

  • 摘要: 利用完全在线耦合气溶胶-辐射-云-降水相互作用的WRF-Chem模式研究了气溶胶直接效应对2012年7月21日一次暴雨的影响。结果表明,WRF-Chem模式较好模拟了此次降水过程中气象场和化学场的变化;模式基本模拟出此次降水的发展过程和总降水量的空间分布特征,气溶胶直接效应不会改变整体降水强度和区域总降水量,但会改变区域内的降水分布形态。在污染地区吸收性气溶胶对太阳短波辐射的吸收使大气中层加热,增强了相应大气层之间的不稳定性,使垂直运动更加强盛,由此霰和雨水对云水的收集增强,可降水粒子增加,降水增强;相反,在污染地区的下风向动力过程则相对减弱,降水减少。气溶胶直接效应通过影响动力过程和微物理过程改变降水的分布

     

  • 图  1  模式网格设置

    图  2  2012年7月21日的08时850hPa风场的观测(a)和模拟(b)、21日2 m平均温度的观测(c)和模拟(d)以及08时(e)和20时(f)北京站1温度廓线的观测和模拟的分布

    图  3  观测(a、c)和模拟(b、d)的2012年7月21日(a~b)和22日(c~d)气溶胶光学厚度

    图  4  观测和模拟的北京站2(a、d)、香河(b、e)和兴隆(c、f)的PM2.5(a~c)和O3 (d~f)的浓度分布

    图  5  2012年7月21日08时—22日08时的24小时总降水量分布

    a.观测;b. CTL;c. NORAD。

    图  6  图 5a中区域观测和模拟的小时降水量(a)和24h总降水量(b)的概率分布以及试验CTL与试验NORAD的24 h总降水量差值(c)

    图  7  2012年7月21日08时—14时平均的试验CTL除BC外非吸收性气溶胶(a)和BC(b)的柱含量分布以及试验CTL和试验NORAD在大气顶(c)、地面(d)和大气中平均(e)的净辐射差值

    图  8  A和B区域平均的短波辐射廓线(a)及其引起的位温倾向(b)

    图  9  2012年7月21日08时—22日08时区域A(a)、区域B(b)的垂直速度概率分布以及试验CTL(c)和试验NORAD(d)在区域A的平均速度时间(北京时)-高度分布

    图  10  霰(a)、雨水(b)和云水(c)的差值以及云量变化(d)

    横坐标为北京时。

    图  11  2012年7月21日08时—22日08时试验CTL在A(a)和B(b)区域的各水成物的时间区域平均以及A(c)和B(d)区域的试验CTL与试验NORAD的差值和总的水凝物差值(e)

    表  1  WRF-Chem模式设置

    设置方案 D1 D2 D3
    分辨率/km 27 9 3
    网格数 155×155 175×175 160×160
    积云参数化方案 Kain-Fritsch Kain-Fritsch
    微物理方案 Lin et al.(双参数方案)[38]
    长/短波辐射 RRTMG
    近地面方案 Monin-Obukhov
    陆面方案 Noah LSM
    边界层方案 MYJ
    化学机制 CBM-Z
    气溶胶模块 MOSAIC(4 bins)
    下载: 导出CSV
  • [1] YANG X J. China's rapid urbanization[J]. Sci, 2013, 342(6 156): 310.
    [2] ZHANG Q, STREETS D G, CARMICHAEL G R, et al. Asian emissions in 2006 for the NASA INTEX-B mission[J]. Atmos Chem Phys, 2009, 9(14): 5131-5153.
    [3] SMITH S J, AARDENNE J V, KLIMONT Z, et al. Anthropogenic sulfur dioxide emissions: 1850—2005[J]. Atmos Chem Phys Discuss, 2010, 10(6): 16111-16151.
    [4] 张小曳.中国不同区域大气气溶胶化学成分浓度、组成与来源特征[J].气象学报, 2014, 72(6): 1108-1117.
    [5] 张小曳, 孙俊英, 王亚强, 等.我国雾-霾成因及其治理的思考[J].科学通报, 2013, 58(13): 1178-1187.
    [6] 李剑东, 毛江玉, 王维强.大气模式估算的东亚区域人为硫酸盐和黑碳气溶胶辐射强迫及其时间变化特征[J].地球物理学报, 2015, 58(4): 1103-1120, doi: 10.6038/cjg20150402.
    [7] CHARLSON R J, SCHWARTZ S E, HALES J M, et al. Climate Forcing by Anthropogenic Aerosols[J]. Sci, 1992, 255(5043): 423-430, doi:10.1126/science.255.5043.423.
    [8] KIEHL J T, BRIEGLEB B P. The relative roles of sulfate aerosols and greenhouse gases in climate forcing[J]. Sci, 1993, 260(5106): 311-314, doi:10.1126/scienc.260.5106.311.
    [9] MYHRE G. Consistency between satellite-derived and modeled estimates of the direct aerosol effect[J]. Sci, 2009, 325(5937): 187-190.
    [10] JACOBSON M Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols[J]. Nature, 2000, 409(6821): 695-697.
    [11] KOREN I, KAUFMAN Y J, REMER L A, et al. Measurement of the effect of Amazon smoke on inhibition of cloud formation[J]. Sci, 2004, 303(5662): 1342-1345, doi:10.1126/science.1089424.
    [12] BOUCHER O, RANDALL D, ARTAXO P, et al. Clouds and aerosols, in climate change 2013: The physical science basis[R]//Contribution of working group Ⅰ to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2013.
    [13] PERE J C, MALLET M, PONT V, et al. Impact of aerosol direct radiative forcing on the radiative budget, surface heat fluxes, and atmospheric dynamics during the heat wave of summer 2003 over western Europe: A modeling study[J]. J Geophys Res, 2012, 116, D23119, doi:10.1029/2011JD016240.
    [14] GIORGI F, BI X, QIAN Y. Direct radiative forcing and regional climatic effects of anthropogenic aerosols over East Asia: A regional coupled climate-chemistry/aerosol model study[J]. J Geophys Res, 2002, 107(D20): 4 439, doi:10.1029/2001JD001066.
    [15] ZHANG Y, WEN X Y, JANG C J. Simulating chemistry-aerosol-cloud-radiation-climate feedbacks over the continental US using the online-coupled weather research forecasting model with chemistry (WRF/Chem)[J]. Atmos Environ, 2010, 44: 3568-3582.
    [16] WANG C, JEONG G R, MAHOWALD N. Paticulate absorption of solar radiation: Anthropogenic aerosols vs dust[J]. Atmos Chem Phys Discuss, 2009, 9(2): 3935-3945.
    [17] JOHNSON B T, HEESE B, MCFARLANE S A, et al. Vertical distribution and radiative effects of mineral dust and biomass burning aerosol over West Africa during DABEX[J]. J Geophys Res, 2008, 113: D00C12, doi:10.1029/2008JD009848.
    [18] LAU K M, KIM K M. Observational relationships between aerosol and Asian monsoon rainfall, and circulation[J]. Geophys Res Lett, 2006, 33: L21810, doi:10.1029/2006GL027546.
    [19] FILIPPO G, BI X Q. Direct radiative forcing and regional climatic effects of anthropogenic aerosols over East Asia: A regional coupled climate-chemistry/aerosol model study[J]. J Geophys Res, 2002, 107, D20:AAC 7-1-AAC 7-18, doi: 10.1029/2001JD001066.
    [20] WANG T J, LI SH, SHEN Y, et al. Invesrigations on direct and indirect effect of nitrate on temperature and precipitation in China using a regional climate chemistry modeling system[J]. J Geophys Res, 2010, 115(D7): 898-907, doi:10.1029/2009JD013264.
    [21] JIANG Y Q, LIU X H, YANG X Q, et al. A numerical study of the effect of different aerosol types on East Asian summer clouds and precipitation[J]. Atmos Environm, 2013, 70(1): 51-63.
    [22] GAO Y, ZHAO CH, LIU X H, et al. WRF-Chem simulations of aerosols and anthropogenic aerosol radiative forcing in East Asia[J]. Atmos Environm, 2014, 92(22): 250-266.
    [23] MASHAYEKHI R, SLOAN J J. Effects of aerosols on precipitation in north-eastern North America[J]. Atmos Chem Phys, 2014, 14: 5111-5125, doi: 10.5194/acp-14-5111-2014.
    [24] PALAMARCHUK I, SERGIY I, IGOR R, et al. Influence of aerosols on atmospheric variables in the HARMONIE model[J]. Atmos Res, 2015, 169: 539-546, doi:10.1016/j.atmosres.2015.08.001.
    [25] 廖礼, 漏嗣佳, 符瑜, 等.中国东部气溶胶在天气尺度上的辐射强迫和对地面气温的影响[J].大气科学, 2015, 39(1): 68-82, doi: 10.3878/j.issn.1006-9895.1402.13302.
    [26] XING J, ROHIT M, JONATHAN P, et al. Air pollution and climate response to aerosol direct radiative effects: A modeling study of decadal trends across the northern hemisphere[J]. J Geophys Res, 2015, 120: 12221-12236, doi:10.1002/2015JD023933.
    [27] ROSENFELD D, ULRIKE L, GRACIELA B R. Flood or drought: How do aerosols affect precipitation[J]. Sci, 2008, 321: 1309-1313, doi: 10.1126/science.1160616.
    [28] WANG C. Anthropogenic aerosol and the distribution of past large-scale precipitation change[J]. Geophys Res Lett, 2015, 42:10876-10884, doi:10.1002/2015GL066416.
    [29] DING A J, FU C B, YANG X Q, et al. Intense atmospheric pollution modifies weather: A case of mixed biomass buring wither fossil fuel combustion pollution in the eastern China[J]. Atmos Chem Phys, 2013, 13(20):10545-10554.
    [30] WANG C. Impact of anthropogenic absorbing aerosols on clouds and precipitation: A review of recent progresses[J]. Atmos Res, 2013, 122(3): 237-249, doi:10.1016/j.atmosres.2012.11.005.
    [31] FAN J W, D ROSENFELD, Y YANG, et al. Substantial contribution of anthropogenic air pollution to catastrophic floods in Southwest China[J]. Geophys Res Lett, 2015, 42: 6066-6075, doi:10.1002/2015GL064479.
    [32] SHI J J, MATSUI T, TAO W K, et al. Implementation of an aerosol-cloud-microphysics-radiation coupling into the NASA unified WRF: Simulation results for the 6—7 August 2006 AMMA special observing period[J]. Q J R Meteorol Soc, 2014, 140(684): 259-286, doi: 10.1002/qj.2286.
    [33] YANG X, FERRAT M, LI Z Q. New evidence of orographic precipitation suppression by aerosols in central China[J]. Meteorol Atmos Phys, 2013, 119: 17-29, doi: 10.1007/s00703-012-0221-9.
    [34] YU M, LIUY. The possible impact of urbanization on a heavy rainfall event in Beijing[J]. J Geophys Res Atmos, 2015, 120: 8132-8143, doi: 10.1002/2015JD023336
    [35] GRELL G A, PECKHAM S E, SCHMITZ R, et al. Fully coupled "online" chemistry within the WRF model[J]. Atmos Environ, 2005, 39(37): 6957-6975.
    [36] FAST J D, GUSTAFSON W I, EASTER Jr R C, et al. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model[J]. J Geophys Res, 2006, 111, D21305, doi:10.1029/2005JD006721.
    [37] WIG Jr, CHAPMAN E G, GHAN S J, et al. Impact on modeled cloud characteristics due to simplified treatment of uniform cloud condensation nuclei during NEAQS 2004[J]. Geophys Res Lett, 2007, 34(19): 255-268, L19809.
    [38] LIN Y L, FARLEY R D, ORVILLE H D. Bulk parameterization of the show field in a cloud model[J]. J App Meteor, 1983, 22(6):1065-1092.
    [39] ZAVERI R A, PETERS L K. A new lumped structure photochemical mechanism for large-scale applications[J]. J Geophy Res, 1999, 104:30387-30415, doi:10.1029/1999JD900876.
    [40] ZAVERI R A, EASTER R C, FAST J D, et al. Model for simulating aerosol interactions and chemistry(MOSAIC)[J]. J Geophys Res, 2008, 113: D13204.
    [41] GUENTHER A, KARL T, HARLEY P, et al. Estimates of global terrestrial isoprene emissions using MEGAN(Model of Emissions of Gases and Aerosols from Nature)[J]. Atmos Chem Phys, 2009, 6(11): 3181-3210.
    [42] EMMONS L K, WALTERS S, HESS P G, et al. Description and evaluation of the model for ozone and related chemical tracers, version 4 (MOZART-4)[J]. Geosci Model Dev, 2010, 3: 43-67, doi:10.5194/gmd-3-43-2010.
    [43] XIN J Y, WANG Y S, PAN Y P, et al. The campaign on atmospheric aerosol research network of china[J]. BAMS, 2015, 96(7): 1137-1155, doi:10.1175/BAMS-D-14-00039.1.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  1011
  • HTML全文浏览量:  77
  • PDF下载量:  506
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-23
  • 修回日期:  2016-10-18
  • 刊出日期:  2017-10-01

目录

    /

    返回文章
    返回