MECHANISM ANALYSIS OF THE IMPACTS OF AEROSOL DIRECT EFFECTS ON A RAINSTORM
-
摘要: 利用完全在线耦合气溶胶-辐射-云-降水相互作用的WRF-Chem模式研究了气溶胶直接效应对2012年7月21日一次暴雨的影响。结果表明,WRF-Chem模式较好模拟了此次降水过程中气象场和化学场的变化;模式基本模拟出此次降水的发展过程和总降水量的空间分布特征,气溶胶直接效应不会改变整体降水强度和区域总降水量,但会改变区域内的降水分布形态。在污染地区吸收性气溶胶对太阳短波辐射的吸收使大气中层加热,增强了相应大气层之间的不稳定性,使垂直运动更加强盛,由此霰和雨水对云水的收集增强,可降水粒子增加,降水增强;相反,在污染地区的下风向动力过程则相对减弱,降水减少。气溶胶直接效应通过影响动力过程和微物理过程改变降水的分布Abstract: The aerosol-radiation-cloud-precipitation was fully coupled online using the WRF-Chem model to investigate the impacts of aerosol direct effects on a heavy rainstorm that occurred on 21 July 2012. The results show that the model could reasonably simulate the variation of meteorological and chemical condition in this rainstorm. The precipitation distribution pattern was changed due to aerosol direct effects while the intensity of rainfall and the regional accumulated precipitation remained the same. The middle atmosphere was heated due to the absorption of shortwave radiation by absorbing aerosols, which increased instability of the corresponding atmosphere layer. As a result, dynamic processes were enhanced and precipitable particles were greatly increased, which contributed to more precipitation. In the downwind of polluted areas, dynamic processes were weakened and thus less precipitation was caused. The aerosol direct effects would change the distribution of precipitation through their impacts on dynamical and microphysical processes
-
Key words:
- aerosol direct effects /
- precipitation /
- mechanism analysis /
- WRF-Chem
-
图 6 图 5a中区域观测和模拟的小时降水量(a)和24h总降水量(b)的概率分布以及试验CTL与试验NORAD的24 h总降水量差值(c)
表 1 WRF-Chem模式设置
设置方案 D1 D2 D3 分辨率/km 27 9 3 网格数 155×155 175×175 160×160 积云参数化方案 Kain-Fritsch Kain-Fritsch 无 微物理方案 Lin et al.(双参数方案)[38] 长/短波辐射 RRTMG 近地面方案 Monin-Obukhov 陆面方案 Noah LSM 边界层方案 MYJ 化学机制 CBM-Z 气溶胶模块 MOSAIC(4 bins) -
[1] YANG X J. China's rapid urbanization[J]. Sci, 2013, 342(6 156): 310. [2] ZHANG Q, STREETS D G, CARMICHAEL G R, et al. Asian emissions in 2006 for the NASA INTEX-B mission[J]. Atmos Chem Phys, 2009, 9(14): 5131-5153. [3] SMITH S J, AARDENNE J V, KLIMONT Z, et al. Anthropogenic sulfur dioxide emissions: 1850—2005[J]. Atmos Chem Phys Discuss, 2010, 10(6): 16111-16151. [4] 张小曳.中国不同区域大气气溶胶化学成分浓度、组成与来源特征[J].气象学报, 2014, 72(6): 1108-1117. [5] 张小曳, 孙俊英, 王亚强, 等.我国雾-霾成因及其治理的思考[J].科学通报, 2013, 58(13): 1178-1187. [6] 李剑东, 毛江玉, 王维强.大气模式估算的东亚区域人为硫酸盐和黑碳气溶胶辐射强迫及其时间变化特征[J].地球物理学报, 2015, 58(4): 1103-1120, doi: 10.6038/cjg20150402. [7] CHARLSON R J, SCHWARTZ S E, HALES J M, et al. Climate Forcing by Anthropogenic Aerosols[J]. Sci, 1992, 255(5043): 423-430, doi:10.1126/science.255.5043.423. [8] KIEHL J T, BRIEGLEB B P. The relative roles of sulfate aerosols and greenhouse gases in climate forcing[J]. Sci, 1993, 260(5106): 311-314, doi:10.1126/scienc.260.5106.311. [9] MYHRE G. Consistency between satellite-derived and modeled estimates of the direct aerosol effect[J]. Sci, 2009, 325(5937): 187-190. [10] JACOBSON M Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols[J]. Nature, 2000, 409(6821): 695-697. [11] KOREN I, KAUFMAN Y J, REMER L A, et al. Measurement of the effect of Amazon smoke on inhibition of cloud formation[J]. Sci, 2004, 303(5662): 1342-1345, doi:10.1126/science.1089424. [12] BOUCHER O, RANDALL D, ARTAXO P, et al. Clouds and aerosols, in climate change 2013: The physical science basis[R]//Contribution of working group Ⅰ to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2013. [13] PERE J C, MALLET M, PONT V, et al. Impact of aerosol direct radiative forcing on the radiative budget, surface heat fluxes, and atmospheric dynamics during the heat wave of summer 2003 over western Europe: A modeling study[J]. J Geophys Res, 2012, 116, D23119, doi:10.1029/2011JD016240. [14] GIORGI F, BI X, QIAN Y. Direct radiative forcing and regional climatic effects of anthropogenic aerosols over East Asia: A regional coupled climate-chemistry/aerosol model study[J]. J Geophys Res, 2002, 107(D20): 4 439, doi:10.1029/2001JD001066. [15] ZHANG Y, WEN X Y, JANG C J. Simulating chemistry-aerosol-cloud-radiation-climate feedbacks over the continental US using the online-coupled weather research forecasting model with chemistry (WRF/Chem)[J]. Atmos Environ, 2010, 44: 3568-3582. [16] WANG C, JEONG G R, MAHOWALD N. Paticulate absorption of solar radiation: Anthropogenic aerosols vs dust[J]. Atmos Chem Phys Discuss, 2009, 9(2): 3935-3945. [17] JOHNSON B T, HEESE B, MCFARLANE S A, et al. Vertical distribution and radiative effects of mineral dust and biomass burning aerosol over West Africa during DABEX[J]. J Geophys Res, 2008, 113: D00C12, doi:10.1029/2008JD009848. [18] LAU K M, KIM K M. Observational relationships between aerosol and Asian monsoon rainfall, and circulation[J]. Geophys Res Lett, 2006, 33: L21810, doi:10.1029/2006GL027546. [19] FILIPPO G, BI X Q. Direct radiative forcing and regional climatic effects of anthropogenic aerosols over East Asia: A regional coupled climate-chemistry/aerosol model study[J]. J Geophys Res, 2002, 107, D20:AAC 7-1-AAC 7-18, doi: 10.1029/2001JD001066. [20] WANG T J, LI SH, SHEN Y, et al. Invesrigations on direct and indirect effect of nitrate on temperature and precipitation in China using a regional climate chemistry modeling system[J]. J Geophys Res, 2010, 115(D7): 898-907, doi:10.1029/2009JD013264. [21] JIANG Y Q, LIU X H, YANG X Q, et al. A numerical study of the effect of different aerosol types on East Asian summer clouds and precipitation[J]. Atmos Environm, 2013, 70(1): 51-63. [22] GAO Y, ZHAO CH, LIU X H, et al. WRF-Chem simulations of aerosols and anthropogenic aerosol radiative forcing in East Asia[J]. Atmos Environm, 2014, 92(22): 250-266. [23] MASHAYEKHI R, SLOAN J J. Effects of aerosols on precipitation in north-eastern North America[J]. Atmos Chem Phys, 2014, 14: 5111-5125, doi: 10.5194/acp-14-5111-2014. [24] PALAMARCHUK I, SERGIY I, IGOR R, et al. Influence of aerosols on atmospheric variables in the HARMONIE model[J]. Atmos Res, 2015, 169: 539-546, doi:10.1016/j.atmosres.2015.08.001. [25] 廖礼, 漏嗣佳, 符瑜, 等.中国东部气溶胶在天气尺度上的辐射强迫和对地面气温的影响[J].大气科学, 2015, 39(1): 68-82, doi: 10.3878/j.issn.1006-9895.1402.13302. [26] XING J, ROHIT M, JONATHAN P, et al. Air pollution and climate response to aerosol direct radiative effects: A modeling study of decadal trends across the northern hemisphere[J]. J Geophys Res, 2015, 120: 12221-12236, doi:10.1002/2015JD023933. [27] ROSENFELD D, ULRIKE L, GRACIELA B R. Flood or drought: How do aerosols affect precipitation[J]. Sci, 2008, 321: 1309-1313, doi: 10.1126/science.1160616. [28] WANG C. Anthropogenic aerosol and the distribution of past large-scale precipitation change[J]. Geophys Res Lett, 2015, 42:10876-10884, doi:10.1002/2015GL066416. [29] DING A J, FU C B, YANG X Q, et al. Intense atmospheric pollution modifies weather: A case of mixed biomass buring wither fossil fuel combustion pollution in the eastern China[J]. Atmos Chem Phys, 2013, 13(20):10545-10554. [30] WANG C. Impact of anthropogenic absorbing aerosols on clouds and precipitation: A review of recent progresses[J]. Atmos Res, 2013, 122(3): 237-249, doi:10.1016/j.atmosres.2012.11.005. [31] FAN J W, D ROSENFELD, Y YANG, et al. Substantial contribution of anthropogenic air pollution to catastrophic floods in Southwest China[J]. Geophys Res Lett, 2015, 42: 6066-6075, doi:10.1002/2015GL064479. [32] SHI J J, MATSUI T, TAO W K, et al. Implementation of an aerosol-cloud-microphysics-radiation coupling into the NASA unified WRF: Simulation results for the 6—7 August 2006 AMMA special observing period[J]. Q J R Meteorol Soc, 2014, 140(684): 259-286, doi: 10.1002/qj.2286. [33] YANG X, FERRAT M, LI Z Q. New evidence of orographic precipitation suppression by aerosols in central China[J]. Meteorol Atmos Phys, 2013, 119: 17-29, doi: 10.1007/s00703-012-0221-9. [34] YU M, LIUY. The possible impact of urbanization on a heavy rainfall event in Beijing[J]. J Geophys Res Atmos, 2015, 120: 8132-8143, doi: 10.1002/2015JD023336 [35] GRELL G A, PECKHAM S E, SCHMITZ R, et al. Fully coupled "online" chemistry within the WRF model[J]. Atmos Environ, 2005, 39(37): 6957-6975. [36] FAST J D, GUSTAFSON W I, EASTER Jr R C, et al. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model[J]. J Geophys Res, 2006, 111, D21305, doi:10.1029/2005JD006721. [37] WIG Jr, CHAPMAN E G, GHAN S J, et al. Impact on modeled cloud characteristics due to simplified treatment of uniform cloud condensation nuclei during NEAQS 2004[J]. Geophys Res Lett, 2007, 34(19): 255-268, L19809. [38] LIN Y L, FARLEY R D, ORVILLE H D. Bulk parameterization of the show field in a cloud model[J]. J App Meteor, 1983, 22(6):1065-1092. [39] ZAVERI R A, PETERS L K. A new lumped structure photochemical mechanism for large-scale applications[J]. J Geophy Res, 1999, 104:30387-30415, doi:10.1029/1999JD900876. [40] ZAVERI R A, EASTER R C, FAST J D, et al. Model for simulating aerosol interactions and chemistry(MOSAIC)[J]. J Geophys Res, 2008, 113: D13204. [41] GUENTHER A, KARL T, HARLEY P, et al. Estimates of global terrestrial isoprene emissions using MEGAN(Model of Emissions of Gases and Aerosols from Nature)[J]. Atmos Chem Phys, 2009, 6(11): 3181-3210. [42] EMMONS L K, WALTERS S, HESS P G, et al. Description and evaluation of the model for ozone and related chemical tracers, version 4 (MOZART-4)[J]. Geosci Model Dev, 2010, 3: 43-67, doi:10.5194/gmd-3-43-2010. [43] XIN J Y, WANG Y S, PAN Y P, et al. The campaign on atmospheric aerosol research network of china[J]. BAMS, 2015, 96(7): 1137-1155, doi:10.1175/BAMS-D-14-00039.1.