EVALUATION OF ASCAT AND HY-2A SATELLITE SCATTEROMETER WINDS VECTORS IN THE SOUTH CHINA SEA
-
摘要: 基于中国科学院南海海洋研究所提供的2012年1月1日—2013年12月31日西沙自动气象站观测资料以及同时间序列的欧洲中心ERA-interim再分析风场产品,统计了ASCAT和HY-2A散射计风场产品的误差特征,分析散射计资料在南海的适用性。分析得出:ASCAT和HY-2A的风速、风向与自动站一致性高,相关系数均大于0.85,ASCAT风速和风向均方根误差分别为1.57 m/s和15.42 °,HY-2A均方根误差略微偏大,分别为2.02 m/s和24.75 °;ASCAT和HY-2A散射计与ERA-interim风速、风向有很好的一致性,在不考虑低风速( < 3 m/s)的条件下,风速均方根误差分别为1.40 m/s和1.56 m/s,风向均方根误差分别为15.09 °和17.07 °,与设计精度一致,表明ASCAT与HY-2A风场产品在南海是适用的。此外,散射计相对再分析风场的偏差没有明显的季节性变化Abstract: The study presents a quality assessment of ASCAT and HY-2A scatterometer sea surface wind data based on comparison with automatic weather stations (AWS) data from Xisha observation station, which was established by the Institute of South China Sea Oceanography, Chinese Academy of Science, and numerical model data from European Center for Medium Range Weather Forecasts (ECMWF) during January 1, 2012-December 31, 2013, to verify the applicability of two scatterometer in the South China Sea. The results show that the scatterometer data have a good consistency and large correlation with the AWS, with the correlation coefficient being greater than 0.85. The root-mean-squared error (RMSE) of wind speed and direction is 1.57 m/s and 15.42 ° for ASCAT, and 2.02m/s and 24.75 ° for HY-2A, respectively. The scatterometer data also have a good consistency with ERA-interim. Ignoring the low wind ( < 3 m/s), the RMSE of wind speed between scatterometer and model is 1.40m/s for ASCAT, and 1.56m/s for HY-2A, and the RMSE of wind direction is both smaller than 20 °, 15.09 ° and 17.07 ° respectively, which can satisfy the design requirements for a scatterometer. These evaluation results indicate that the wind data from ASCAT and HY-2A is applicative in the South China Sea. Besides, and no clear seasonal variation exists for the residuals between the scatterometer and the ERA-interim
-
Key words:
- automatic weather station /
- scatterometer /
- sea surface winds field /
- evaluation
-
表 1 散射计与ERA-interim风速、风向的统计误差对比
统计量 风速 风向 ASCAT HY-2A ASCAT HY-2A Bias/(m/s) 0.51 0.67 -3.71 -5.17 RMSE/(m/s) 1.40 1.56 15.09 17.07 R 0.87 0.85 0.98 0.98 -
[1] 何宜军, 陈戈, 郭佩芳, 等.高度计海洋遥感研究与应用[M].北京:科学出版社, 2002: 111. [2] 李艳兵, 黄思训, 翟景秋.卫星反演风场进展概述[J].气象科学, 2009, 29(2): 277-284. [3] 赵大军, 于玉斌, 李莹. "0814"号强台风发展维持的环境场分析[J].气象科学, 2011, 31(5): 591-597. [4] LIU W T. Progress in scatterometer application[J].JOceanogu, 2002, 58(1): 121-136. [5] LIN M, ZOU J, XIE X, et al. HY-2A microwave scatterometer wind retrieval algorithm[J]. Eng Sci, 2013, 68(1): 68-74. [6] HOFFMAN R N, LEIDNER S M. An Introduction to the Near-Real-Time QuikSCAT Data[J]. Wea Forecast, 2005, 20(4): 476-493. [7] SINGH R, KUMAR P, PAL P K. Assimilation of oceansat-2-ocatterometer-Derived surface winds in theweather research and forecasting model[J]. IEEE Trans Geosci RemoteSens, 2012, 50(4): 1015-1021. [8] WEISSMAN D E, STILES B W, HRISTOVA-VELEVA S M, et al. Challenges to satellite sensors of ocean winds: Addressing precipitation effects[J]. J Atmos Ocean Tech, 2012, 29(3): 356-374. [9] FIGA S J, WILSON J J W. The advanced Scatterometer on the meteorological operational platform: A follow on for European wind scatterometers[J]. Can J Remote Sensing, 2002, 28(3): 404-412. [10] BENTAMY A, CROIZE-FILLON D, PERIGAUD C. Characterization of ASCAT measurements based on buoy and QuikSCAT wind vector observations[J]. Ocean Science, 2008, 4(4): 265-274. [11] VERSPEEK J, STOFFELENA, PORTABELLA M, et al. Validation and calibration of ASCAT Using Cmod5, n[J]. IEEE Trans Geosci Remote Sens, 2010, 48(1): 386-395. [12] LI D-W, SHEN H. Evaluation of wind vectors observed by HY-2A scatterometer using ocean buoy observations, ASCAT measurements, and numerical model data[J]. Chinese J Oceanol Limnol, 2015, 33(5): 1191-1200. [13] WU Q, CHEN G. Validation and intercomparison of HY-2A/MetOp-A/Oceansat-2scatterometer wind products[J]. Chinese J OceanolLimnol, 2015, 33(5): 1181-1190. [14] YANGX-F, LIUG-H, LI Z, et al. Preliminary validation of ocean surface vector winds estimated from China's HY-2A scatterometer[J]. Internat J RemoteSen, 2014, 35(12): 3919-3925. [15] 刘春霞, 何溪澄. QuikSCAT散射计矢量风统计特征及南海大风遥感分析[J].热带气象学报, 2003, 19(增刊): 107-117. [16] 刘春霞, 王静, 齐义泉, 等.基于WRF模式同化QuikSCAT风场资料的初步试验[J].热带海洋学报, 2004, 23(6): 69-74. [17] BERRIS FORD P, DEE D, FIELDING K, et al. The ERA-interim archive[R]. Era Report, 2009. [18] MEARS C A, SMITH D K, WENTZ F J. Comparison of special sensor microwave imager and buoy-measured wind speeds from 1987 to 1997[J]. J Geophys Res, 2001, 106(C6): 11719-11729. [19] EBUCHI N, GRABER H, CARUSO M J. Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data[J]. J Atmos Oceanic Technol, 2002, 19(12): 1082-1085. [20] FREILICH M H, DUNBAR R S. The accuracy of the NSCAT 1vector winds comparisons with national data buoy center buoys[J]. J Geophys Res, 1999, 104(C5): 11231-11246. [21] 穆博, 林明森, 彭海龙, 等. HY-2卫星微波散射计反演风矢量产品真实性检验方法研究[J].中国工程科学, 2014, 16(6): 39-45. [22] PEIXOTO J P, OORTA H. Physics of Climate[M]. Am Inst Phys, 1992. [23] LI J, WANG D-X, CHEN J, et al. Comparison of remote sensing data with in-situ wind observation during the development of the South China Sea monsoon[J]. Chinese J Oceanol Limnol, 2012, 30(6): 933-943. [24] PENSIERI S, BOZZANO R, SCHIANO M E. Comparison between QuikSCAT and buoy wind data in the Ligurian Sea[J]. J Mar Syst, 2010, 81(4): 286-296. [25] DEED P, UPPALAS M, SIMMONSA J, et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system[J]. Q J Roy Meteorolog Soc, 2011, 137(656): 553-597. [26] CHELTON D B, FREILICH M H. Scatterometer-based assessment of 10-m wind analyses from the operational ECMWF and NCEP numerical weather prediction models[J]. Mon Wea Rev, 2005, 133(2): 409-429. [27] EBUCHI N, GRABER H, CARUSO M J. Evaluation of wind vectors observed by QuikSCAT/SeaWindsusing ocean buoy data[J]. J Atmos OceanicTechnol, 2002, 19(12): 2049-2062.