SYNOPTIC SITUATIONS OF PM2.5 POLLUTION EPISODES AND TRANSPORTATION CHARACTERISTICS DURING A TYPICAL WINTER SEVERE POLLUTION EVENT IN ZHAOQING
-
摘要: 为了揭示肇庆市颗粒物重污染过程的发生与发展规律,利用2013—2014年PM2.5监测数据,分析该区域两年间的空气质量整体变化情况以及PM2.5污染过程的季节变化规律,统计两年间所有颗粒物重污染过程,并根据污染过程的天气形势展开分析,运用空气质量数值模型(WRF-Chem)对冬季一次典型重污染过程进行模拟研究。结果表明,肇庆2013—2014年共发生27次PM2.5重污染过程且主要出现在秋冬季,结合气象场的分布特征,总结出四种诱发重污染过程发生的天气形势,分别是高压出海型(48%)、热带低压型(22%)、锋面影响型(19%)及冷高压控制型(11%)。在四种天气形势的影响下,肇庆整体风向以东南风和南风为主,大气处于静稳状态,导致污染物的积累并诱发重污染过程。WRF-Chem模拟结果进一步发现,不利气象条件及本地排放源是造成肇庆冬季重污染过程发生的主要原因。结合四维通量模型对肇庆边界污染物输送情况进行定量分析后发现,肇庆PM2.5以输出为主,其中硝酸盐与氨盐的输出通量较大。此外,模型还揭示了肇庆境内的主要污染物输送通道呈东南-西北走向,外地输入的污染物也通过此通道影响肇庆的空气质量Abstract: In order to investigate the occurrence and development of severe particle pollution process, two-years (2013—2014) of continuous observation data of PM2.5 collected in Zhaoqing, Guangdong province were used and analyzed in this study to explore the seasonal variation of air quality and PM2.5 pollution processes. In addition, all the particle pollution processes, combined with their weather condition during 2013 and 2014, were summarized and analyzed, and the air quality numerical model (WRF-Chem) was applied to simulate and study a typical winter heavy haze event. The result showed that, a total of 27 pollution episodes were found in 2013 and 2014, and extreme pollution episodes mainly occurred in autumn and winter season. By analyzing the characteristics of PM2.5 pollution episodes, four typical weather conditions related to pollution episodes were summarized, including weak-high-pressure type (48%), tropical-depression type (22%), front type (19%) and strong-high-pressure type (11%). The prevailing wind direction was southeast and south under the influence of these weather conditions, and the atmosphere was in a steady state, resulting in the accumulation of pollutants and further leading to the occurrence of pollution episodes. Model results revealed that the adverse meteorological conditions and local emission sources were the key reasons for the occurrence of pollution processes. A four-dimensional flux model was employed to study the regional transport flux of atmospheric pollutants. Negative net flux was found for PM2.5, indicating that the pollutants in Zhaoqing area were exported to adjacent areas, especially NO3- and NH4+, which showed a relatively high negative flux. In addition, the transport pathway of pollutants in Zhaoqing mainly ran from southeast to northwest. The nonlocal pollutants tend to be transported through the pathway and further influence the air quality of Zhaoqing area
-
图 5 同图 4,但为热带低压型(2013年10月30日)
图 6 同图 4,但为锋面影响型(2014年3月12日)
图 7 同图 4,但为冷高压控制型(2014年3月17日)
表 1 WRF-Chem参数化方案设置
表 2 9个观测站点的气象要素验证结果
气象要素 观测平均值 模拟平均值 偏差平均值 平均绝对误差平均值 均方根误差平均值 相关系数平均值 地面气压/hPa 1 013 1 013 -0.18 3.91 3.95 0.99 2 m气温/℃ 15 14 0.40 1.28 1.47 0.92 相对湿度/% 63 58 -0.32 8.16 9.72 0.86 地面风速/(m/s) 2.0 3.6 1.86 1.87 2.12 0.69 表 3 肇庆市4个环境监测点的PM2.5验证结果
站点 观测平均值/(μg/m3) 模拟平均值/(μg/m3) 平均偏差/(μg/m3) 平均绝对误差 均方根误差值 相关系数 睦岗 136 70 -66 71 90 0.57 城中 134 79 -55 64 85 0.58 坑口 128 80 -48 56 78 0.61 七星岩 139 70 -69 70 92 0.61 表 4 肇庆重污染过程主要天气类型次数及频率
类型 次数 频率/% 频发季节 高压出海型 13 48.1 秋、冬 热带低压型 6 22.2 夏、秋 锋面影响型 5 18.5 春 冷高压控制型 3 11.1 秋、冬 表 7 2014年1月2—8日肇庆市各边界PM2.5及组分输送总量单位:t
边界 PM2.5 EC OC NH4+ NO3- SO42- 西北边界(肇庆-广西) -2 403 -119 -167 -348 -971 -178 东北边界(肇庆-清远) -2 254 -99 -128 -406 -1 113 -177 西南边界(肇庆-云浮) 178 -40 -65 73 221 60 东南边界(肇庆-佛山) 1 934 139 261 176 422 193 净输送通量 -2 545 -119 -100 -505 -1 441 -101 -
[1] TAO M, CHEN L, XIONG X, et al. Formation process of the widespread extreme haze pollution over northern China in January 2013: Implications for regional air quality and climate[J]. Atmos Environ, 2014, 98: 417-425. [2] CHEN W, WANG X, ZHOU S, et al. Chemical composition of PM2.5 and its impact on visibility in Guangzhou, Southern China[J]. Aer Air Qual Res, 2016, 16(10): 2349-2361. [3] 段献忠, 陈欢欢.珠江三角洲空气污染时空分布特征及一次区域性污染过程气象特征数值模拟[J].中山大学研究生学刊:自然科学与医学版, 2008, 29(3): 42-49. [4] WANG T, LAM K, XIE M, et al. Integrated studies of a photochemical smog episode in Hong Kong and regional transport in the Pearl River Delta of China[J]. Tellus B, 2006, 58(1): 31-40. [5] FAN S, WANG B, TESCHE M, et al. Meteorological conditions and structures of atmospheric boundary layer in October 2004 over Pearl River Delta Area[J]. Atmos Environ, 2008, 42(25): 6174-6186. [6] 张兰, 张宇飞, 林文实, 等.空气污染对珠江三角洲一次大暴雨影响的数值模拟[J].热带气象学报, 2015, 31(2): 264-272. [7] 范绍佳, 王安宇, 樊琦, 等.珠江三角洲大气边界层概念模型的建立及其应用[J].热带气象学报, 2005, 21(3): 286-292. [8] CHEN X, FAN S, LI J, et al. Typical weather characteristics associated with air pollution in Hong Kong Area[J]. J Trop Meteor, 2008, 14(2): 101-104. [9] 潘月云, 李楠, 郑君瑜, 等.广东省人为源大气污染物排放清单及特征研究[J].环境科学学报, 2015, 9(9): 2655-2669. [10] 张浩月, 王雪松, 陆克定, 等.珠江三角洲秋季典型气象条件对O3和PM10污染的影响[J].北京大学学报(自然科学版), 2014, 50(3): 565-576. [11] AN X, ZHU T, WANG Z, et al. A modeling analysis of a heavy air pollution episode occurred in Beijing[J]. Atmos Chem Phys, 2007, 7(12): 3103-3114. [12] 王文丁, 陈焕盛, 吴其重, 等.珠三角冬季PM2.5重污染区域输送特征数值模拟研究[J].环境科学学报, 2016, 36(8): 2741-2751. [13] 樊琦, 洪莹莹, 赖安琪, 等. 典型气象条件下珠三角城市群PM2. 5区域输送特征的数值模拟[C]//第十二届全国气溶胶会议暨第十三届海峡两岸气溶胶技术研讨会. 中国颗粒学会气溶胶专业委员会、台湾气溶胶学会, 2015: 9. [14] LIU F, ZHANG Q, TONG D, et al. High-resolution Inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010[J]. Atmos Chem Phys, 2015, 15(23): 13299-13317. [15] LIN Y, FARLEY R D, ORVILLE H D. Bulk parameterization of the snow field in a cloud model[J]. J Clim Appl Meteor, 1983, 22(6): 1065-1092. [16] MLAWER E J, TAUBMAN S J, BROWN P D, et al. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave[J]. J Geophys Res: Atmos, 1997, 102(D14): 16663-16682. [17] CHOU M, SUAREZ M J, HO C, et al. Parameterizations for cloud overlapping and shortwave single-scattering properties for use in general circulation and cloud ensemble models[J]. J Clim, 1998, 11(2): 202-214. [18] MARTILLI A, CLAPPIER A, ROTACH M W. An urban surface exchange parameterisation for mesoscale models[J]. Boundary-layer Meteorol, 2002, 104(2): 261-304. [19] CHEN F, KUSAKA H, BORNSTEIN R, et al. The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems[J]. Internat J Climatol, 2011, 31(2): 273-288. [20] GERRITY J J P, BLACK T L, TREADON R E. The numerical solution of the mellor-yamada level 2.5 turbulent kinetic energy equation in the ETA model[J]. Mon Wea Rev, 1994, 122(7): 1640-1646. [21] ZAVERI RA, PETERS LK. A new lumped structure photochemical mechanism for large-scale applications[J]. J Geophys Res: Atmos, 1999, 104(D23): 30387-30415. [22] ZAVERI RA, EASTER RC, FAST JD, et al. Model for simulating aerosol interactions and chemistry(mosaic)[J]. J Geophys Res: Atmos, 2008, 113(D13): 204. [23] FAST J D, GUSTAFSON W I, EASTER R C, et al. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of houston using a fully coupled meteorology chemistry-aerosol model[J]. J Geophys Res: Atmos, 2006, 111(D21): 305. [24] 杨柳林, 王雪梅, 陈巧俊.区域间大气污染物相互影响研究的新方法探讨[J].环境科学学报, 2012, 32(3): 528-536. [25] 程念亮, 李云婷, 孙峰, 等.北京市空气重污染天气类型分析及预报方法简介[J].环境科学与技术, 2015, 38(5): 189-194. [26] 李菲, 吴兑, 谭浩波, 等.广州地区旱季一次典型灰霾过程的特征及成因分析[J].热带气象学报, 2012, 28(1): 113-122. [27] 蒋德海, 王成刚, 吴兑, 等.利用风廓线雷达资料对广州地区边界层日变化特征的分析研究[J].热带气象学报, 2013, 29(1): 129-135.