ISSN 1004-4965

CN 44-1326/P

用微信扫描二维码

分享至好友和朋友圈

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同边界层参数化方案对一次梅雨锋暴雨过程湍流交换特征模拟的影响

沈新勇 马铮 郭春燕 李小凡

沈新勇, 马铮, 郭春燕, 李小凡. 不同边界层参数化方案对一次梅雨锋暴雨过程湍流交换特征模拟的影响[J]. 热带气象学报, 2017, 33(6): 793-811. doi: 10.16032/j.issn.1004-4965.2017.06.001
引用本文: 沈新勇, 马铮, 郭春燕, 李小凡. 不同边界层参数化方案对一次梅雨锋暴雨过程湍流交换特征模拟的影响[J]. 热带气象学报, 2017, 33(6): 793-811. doi: 10.16032/j.issn.1004-4965.2017.06.001
Xin-yong SHEN, Zheng MA, Chun-yan GUO, Xiao-fan LI. THE EFFECT OF BOUNDARY LAYER PARAMETERIZATION SCHEMES ON THE SIMULATION OF TURBULENT EXCHANGE PROPERTIES OF A MEI-YU RAINSTORM[J]. Journal of Tropical Meteorology, 2017, 33(6): 793-811. doi: 10.16032/j.issn.1004-4965.2017.06.001
Citation: Xin-yong SHEN, Zheng MA, Chun-yan GUO, Xiao-fan LI. THE EFFECT OF BOUNDARY LAYER PARAMETERIZATION SCHEMES ON THE SIMULATION OF TURBULENT EXCHANGE PROPERTIES OF A MEI-YU RAINSTORM[J]. Journal of Tropical Meteorology, 2017, 33(6): 793-811. doi: 10.16032/j.issn.1004-4965.2017.06.001

不同边界层参数化方案对一次梅雨锋暴雨过程湍流交换特征模拟的影响

doi: 10.16032/j.issn.1004-4965.2017.06.001
基金项目: 

国家自然科学基金项目 41375058

国家自然科学基金项目 41530427

国家自然科学基金项目 41475039

国家重点研发计划 2016YFC0203301

国家重点基础研究发展计划973项目 2015CB453201

江苏省自然科学基金重点项目 BK20150062

详细信息
    通讯作者:

    沈新勇,男,江苏省人,教授,博士生导师,主要从事中尺度气象学和大气污染研究。E-mail: sxydr@126.com

  • 中图分类号: P435

THE EFFECT OF BOUNDARY LAYER PARAMETERIZATION SCHEMES ON THE SIMULATION OF TURBULENT EXCHANGE PROPERTIES OF A MEI-YU RAINSTORM

  • 摘要: 利用WRF模式结合不同的边界层参数化方案,对2007年7月3—5日发生在江淮流域的一次梅雨锋暴雨过程进行多组数值模拟试验。结果发现,边界层方案的选取对于降水的落区和强度模拟会产生较显著的影响;在降水率及地面要素的模拟上,各方案在降水中后期的模拟差异明显大于降水发生阶段;不同边界层方案的选取对于降水时段内的水平风场、垂直运动和假相当位温的垂直分布都产生影响,直接影响降水时空分布的模拟;不同方案都模拟出了在降水发生之后不同于晴空日变化的湍流动能垂直分布,经分析发现与局地较强的垂直风切变和近地面强湍流气团被抬升有关,而浮力项起着耗散作用;各方案的湍流交换特征与湍流动能特征基本吻合,相比于其他方案,MYJ方案在降水区域的湍流动能及湍流交换强度明显偏弱,对热通量的输送也偏弱;GBM方案在边界层内的湍流混合偏弱而在边界层以上湍流混合显著偏强,热通量输送在边界层以上的高度上误差明显,影响了对降水区域气象要素的模拟能力,仍需要进一步改进。

     

  • 图  1  a. 7月4日20时—5日20时江淮地区的累计降水量(单位:mm);b. 7月5日02时FY-2C卫星云图

    图  2  a. 7月4日12时500 hPa位势高度场(单位:10 gpbm);b. 7月5日00时850 hPa水汽通量散度

    (阴影,单位:10-6 g/(s·cm2·hPa))和垂直涡度(等值线:单位:10-5 m-1

    图  3  模式区域设置

    图  4  模拟区域4日20时—5日20时的累计降水量实况  单位:mm。

    图  5  不同方案模拟的7月4日20时—5日20时累计降水量  单位:mm。

    a. NO_PBL;b. MYJ;c. MYNN2;d. MYNN3;e. BouLac;f. GBM。

    图  6  三个不同研究区域的选择和MYJ方案模拟的24小时的累计降水量

    单位:mm。

    图  7  观测与各试验的雨带(112~120 °E,32~35 °N)(a)、A区域(b)和B区域(c)的区域平均降水率随时间的变化

    单位:mm/h。横坐标为日时。

    图  8  各方案模拟的细网格模拟区域平均的4日00时—5日12时的水平风速时间-高度剖面单位:m/s。

    a.实况分析场;b. MYNN2;c. MYNN3;d. BouLac;e. GBM;f. NoPBL。

    图  9  0418时(a)、0421时(b)、0500时(c、d)的A区域(a、b)和B区域(c、d)平均的各试验得到的温度(a、c,单位:K)及水汽混合比(b、d,单位:kg/kg)的垂直廓线

    图  10  实况分析的A区域(a)和B区域(b)的区域平均的温度(实线,单位:K)和比湿(虚线,单位:kg/kg)的时间-高度剖面

    图  11  各方案模拟的4日00时—5日15时B区域的区域平均垂直速度的时间-高度剖面  单位:10-2 m/s。

    a. MYJ; b. MYNN2; c. MYNN3; d. BouLac; e. GBM; f. NoPBL。

    图  12  不同方案在0500 UTC的θse沿114~115 °E平均的南北向剖面

    单位:K。a.实况分析场; b. MYJ; c. MYNN3; d. NO_PBL。

    图  13  不同方案在A区域平均的TKE高度-时间剖面

    单位:m2/s2。a. MYJ; b. MYNN2; c. MYNN3; d. BouLac; e. GBM。

    图  14  图 13,但为C区域

    图  15  MYNN2模拟的A区域平均的浮力作用项(a,单位:10-3 m2/s2)、切变项(b,单位:10-3 m2/s2)和湍流输送项(c,单位:10-4 m2/s2)的高度-时间剖面

    图  16  0418(a~b)和0506(c~f)区域A(a~d)和区域C(e~f)湍流热量、水汽交换系数(a、c、e)和湍流动量交换系数(b、d、f)垂直廓线

    单位:m2/s。

    图  17  MYNN3(a、b), MYJ(c、d), GBM(e、f)方案B区域的感热通量(a、c、e)和潜热通量(b、d、f)随时间和高度的变化

    单位:W/m2

    图  18  a.各方案在B区域0500 UTC的湍流热量、水汽交换系数随高度的分布情况;b. GBM方案在B区域的TKE随时间和高度变化

    单位:m2/s2

    表  1  WRF模式部分边界层参数化方案简介

    边界层方案 湍流闭合阶数 局地/非局地 处理湍流闭合方式
    Yonsei University[33] 1阶闭合 非局地 K廓线闭合
    Mellor-Yamada-Janjic[34] 1.5阶闭合 局地 TKE闭合
    Asymnietric Convective Model version 2[35] 1阶闭合 非局地 向上混合过程为过渡湍流混合,向下为局地K混合
    MYNN Level-2.5[36] 1.5阶闭合 局地 TKE闭合
    MYNN Level-3[37] 2阶闭合 局地 TKE闭合
    Bougeault-Lacarrere[38] 1.5阶闭合 局地 TKE闭合
    Grenier-Bretherton-McCaa[39] 1.5阶闭合 局地 TKE闭合
    下载: 导出CSV

    表  2  试验设计

    试验名 边界层方案 近地面层方案 陆面过程方案
    MYJ Mellor-Yamada-Janjic方案 Monin-Obukhov方案(Eta近似) Noah方案
    MYNN2 MYNN level-2.5方案 Monin-Obukhov方案(Eta近似) Noah方案
    MYNN3 MYNN level-3方案 Monin-Obukhov方案(Eta近似) Noah方案
    BouLac Bougeault-Lacarrere方案 Monin-Obukhov方案(Eta近似) Noah方案
    GBM Grenier-Bretherton-McCaa方案 Monin-Obukhov方案(MM5近似) Noah方案
    NO PBL 不使用边界层方案 Monin-Obukhov方案(Eta近似) Noah方案
    下载: 导出CSV
  • [1] OGURA Y, CHEN Y L. A life history of an intense mesoscale convective storm in Oklahoma[J]. J Atmos Sci, 1977, 34(9): 1 458-1 476.
    [2] WILSON J W, FOOTE G B, FANKHAUSER J C, et al. The role of boundary-layer convergence zones and horizontal rolls in the initiation of thunderstorms: A case study[J]. Mon Wea Rev, 1992, 120(9): 1 785-1 815.
    [3] WILSON J W, MEGENHARDT D L. Thunderstorm initiation, organization, and lifetime associated with florida boundary layer convergence lines[J]. Mon Wea Rev, 1996, 125(7): 1 507-1 525.
    [4] FABRY F. The spatial variability of moisture in the boundary layer and its effect on convection initiation: Project-long characterization[J]. Mon Wea Rev, 2006, 134(1): 79-91.
    [5] 盛杰, 林永辉.边界层对梅雨锋β中尺度对流系统形成发展作用的模拟分析[J].气象学报, 2010, 68(3): 339-350.
    [6] 张立祥, 李泽椿.一次东北冷涡MCS边界层特征数值模拟分析[J].气象学报, 2009, 67(1): 75-82.
    [7] 丁治英, 王慧, 沈新勇, 等.一次梅雨期暴雨与中层锋生、β中尺度小高压的关系[J].大气科学学报, 2010, 33(2): 142-152.
    [8] 许长义, 林永辉, 管兆勇.梅雨锋上两类中尺度对流系统形成的边界层特征[J].大气科学学报, 2012, 35(1): 51-63.
    [9] ZHAI G, ZHOU L, WANG Z. Analysis of a group of weak small-scale vortexes in the planetary boundary layer in the Mei-yu front[J]. Adv Atmos Sci, 2007, 24(3): 399-408.
    [10] 沈杭锋, 章元直, 查贲, 等.梅雨锋上边界层中尺度扰动涡旋的个例研究[J].大气科学, 2015, 39(5): 1 025-1 037.
    [11] 赵鸣.边界层和陆面过程对中国暴雨影响研究的进展[J].暴雨灾害, 2008, 27(2): 186-190.
    [12] BRAUN S A, TAO W K. Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations[J]. Mon Wea Rev, 2000, 128(12): 3 941-3 961.
    [13] KEPERT J D. Choosing a boundary layer parameterization for tropical cyclone modeling[J]. Mon Wea Rev, 2012, 140(5): 1 427-1 445.
    [14] GIBBS J A, FEDOROVICH E, EIJK A M J V. Evaluating weather research and forecasting (WRF) model predictions of turbulent flow parameters in a dry convective boundary layer[J]. J Appl Meteorol Climatol, 2011, 50(12): 2 429-2 444.
    [15] SHIN H H, HONG S Y. Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99[J]. Boundary-Layer Meteorology, 2011, 139(2): 261-281.
    [16] XIE B, FUNG J C H, CHAN A, et al. Evaluation of nonlocal and local planetary boundary layer schemes in the WRF model[J]. J Geophys Res Atmos, 2012, 117(D12): 48-50.
    [17] 黄文彦, 沈新勇, 王卫国, 等.边界层参数化方案对边界层热力和动力结构特征影响的比较[J].地球物理学报, 2014, 57(5): 1 399-1 414.
    [18] 张碧辉, 刘树华, 马雁军. MYJ和YSU方案对WRF边界层气象要素模拟的影响[J].地球物理学报, 2012, 55(7): 2 239-2 248.
    [19] 杨玉华, 刘长海, DUDHIA J, 等.基于大涡模拟对两类典型边界层参数化方案的评估分析[J].高原气象, 2016, 35(1): 172-180.
    [20] 沈新勇, 黄文彦, 王卫国, 等.利用TWP-ICE试验资料对比两种边界层参数化方案[J].应用气象学报, 2014(4): 385-396.
    [21] 赵世强, 张镭, 王治厅, 等.利用激光雷达结合数值模式估算兰州远郊榆中地区夏季边界层高度[J].气候与环境研究, 2012, 17(5): 523-531.
    [22] 郑益群, 高俊岭, 曾新民.边界层参数化方案对陆气相互作用影响的模拟研究[J].气象科学, 2011, 31(4): 501-509.
    [23] BELJAARS A C M, VITERBO P, MILLER M J, et al. The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture anomalies[J]. Mon Wea Rev, 1996, 124(3): 362-383.
    [24] WISSE J S P, ARELLANO J V-G D, PINO D. Analysis of planetary boundary layer representations during a sever convective storm[C]//In: 4th EGS Plinius Conference, Mallorca, 2002.
    [25] ZAMPIERI M, MALGUZZI P, BUZZI A. Sensitivity of quantitative precipitation forecasts to boundary layer parameterization: A flash flood case study in the Western Mediterranean[J]. Natur Haz Earth Syst Sci, 2005, 5(4): 603-612.
    [26] CURIC M, JANC D, KOVACEVIC N. The influence of boundary layer conditions on storm life cycles[C]//In: 5th European Conference on Severe Storms, Landshut, 2009.
    [27] 董佩明, 赵思雄.边界层过程对"98·7"长江流域暴雨预报影响的数值试验研究[J].气候与环境研究, 2003, 8(2): 230-240.
    [28] 陈炯, 王建捷.边界层参数化方案对降水预报的影响[J].应用气象学报, 2006, 17(S1): 11-17.
    [29] 黄泓, 李刚, 谭言科, 等. WRF3. 0模式中边界层参数化方案对暴雨预报的影响[C]//第26届中国气象学会年会灾害天气事件的预警、预报及防灾减灾分会场论文集. 北京: 中国气象学会、国家气象中心、水利部水文局, 2009: 15.
    [30] 肖玉华, 何光碧, 顾清源, 等.边界层参数化方案对不同性质降水模拟的影响[J].高原气象, 2010, 29(2): 331-339.
    [31] 刘羽, 陈超君, 许建玉.中尺度模式边界层方案对华中区域降水预报的对比试验[J].暴雨灾害, 2015, 34(3):230-238.
    [32] 陆小勇, 沈杭锋, 吴静.边界层参数化方案在梅雨暴雨模拟中的应用比较[J].浙江气象, 2011, 32(4): 11-16.
    [33] HONG S, NOH Y, DUDHIA J. A new vertical difiusion package with an explicit treatment of entrainment processes[J]. Mon Wea Rev, 2006, 134(9): 2 318-2 341.
    [34] JANJIC Z I. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes[J]. Mon Wea Rev, 1994, 122(5): 927-945.
    [35] PLEIM J E. A combined local and nonlocal closure model for the atmospheric boundary layer, Part Ⅰ: Model description and testing[J]. J Appl Meteorol Climatol, 2007, 46(9): 1 383-1 395.
    [36] NAKANISHI M, NⅡNO H. Development of an improved turbulence closure model for the atmospheric boundary layer[J]. J Meteorolog Soc Japan, 2009, 87(5): 895-912.
    [37] NAKANISHI M, NⅡNO H. An improved Mellor Yamada Ievel-3 model: its numerical stability and application to a regional prediction of advection fog[J]. Bound Lay Meteorol, 2006, 119(2): 397-407.
    [38] BOUGEAULT P, LACARRERE P. Parameterization of orography-induced turbulence in a mesobeta-scale model[J]. Mon Wea Rev, 1989, 117(8): 1 872-1 890.
    [39] GRENIER H, BRETHERTON C S. A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers[J]. Mon Wea Rev, 2001, 129(3): 357-377.
    [40] STULL R B. An introduction to boundary layer meteorology[M]. Netherlands: Kluwer Academic Publisher, 1988: 666.
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  1226
  • HTML全文浏览量:  46
  • PDF下载量:  550
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-04
  • 修回日期:  2017-04-30
  • 刊出日期:  2017-12-01

目录

    /

    返回文章
    返回