ANALYSIS ON THE PHYSICAL PARAMETER FIELD AND ECHO CHARACTERISTICS OF DOPPLER RADAR FOR A DESTRUCTIVE WIND IN HAINAN APRIL 11, 2016
-
摘要: 利用海口多普勒雷达、海南省区域加密自动站和常规资料对2016年4月11日凌晨发生在海南岛北部近海和陆地的大范围雷暴大风过程进行天气学分析。结果表明:(1)这次雷暴大风过程发生在500 hPa槽前、低空急流左前侧、低层切变线南侧、高空急流分流区下方和地面静止锋南侧的有利于对流发展的较大范围上升气流区域内;(2)对流风暴移动路径上的大气环境具有中等程度的条件不稳定、对流有效位能CAPE以及上干冷下暖湿的温-湿廓线垂直结构、强的深层垂直风切变,对流风暴形成后最终组织发展产生雷暴大风、大冰雹和短时强降水的多单体带状回波和弓形回波;(3)在多单体带状回波中镶嵌的风暴A和B各自发展成为具有中层径向辐合特征的超级单体,风暴B和C合并形成弓形回波,其中风暴C的中气旋加强成为弓形回波北部的气旋式中尺度涡旋;(4)阵风锋对对流风暴的正反馈作用、对流风暴前侧强劲的暖湿入流与风暴后侧径向风速相当的冷池出流,长时间倾斜依存的自组织结构及其与强的低层环境风垂直切变的相互作用,是多单体风暴和弓形回波长时间维持和加强的主要原因;(5)地面原来存在的β中尺度辐合切变线,对流风暴主体回波沿着海南岛北部近海东移等因素,有利于多单体带状回波和弓形回波的长时间维持。Abstract: A destructive wind event, with occurred on 11 April 2016 extensively and caused great damage and casualties in the north of Hainan Island, is analyzed based on Doppler radar, intensive automatic weather stations, and conventional meteorological stations. The result shows that an extended region of intense vertical upward motion in the front of a 500hPa trough, the left front of a low-level jet, the south of a low-level shear line, the south side of a ground stationary front and the diverging area of an upper-level jet provided favorable conditions for strong convective development. The convective storm formed in the conditions of moderate instability and convective available potential energy (CAPE), vertical profile of temperature and humidity with a dry and cold upper level, a wet and warm lower level, and a strong vertical wind shear. The typical features of hook echo and bow echo were found when the convective storm developed with strong wind, heavy hail and short time heavy rainfall. In this case, two storms (called storm A and B) developed into a supercell convective storm (storm C) with strong middle-altitude radial velocity. Storm B and C merged and formed a bow echo, and a mesocyclone with storm C became a mesoscale cyclonic eddy at the north part of the bow echo. A rear downdraft jet of the bow echo in the 0.2 to 2km height maintained the maximum radar radial velocity at 39m/s, and the entrainment of dry air resulted in the rapid evaporation of rain and the cooling of hail, which accelerated the descending air flow. A strong warm moist inflow in the front of the convective storm and a cold pool of the rear outflow obliquely coexisted with equivalent wind speed. Positive feedback of the gust front and its interaction with low-level vertical wind shear caused long-time maintenance and the enhancement of a self-organized mechanism made multiple-cell band storm and bow echo to strengthen and maintain. Multiple influential factors, such as the pre-existing meso-β-scale convergence shear on the ground and main echoes of convective storm moving eastward along the northern coast of Hainan Island, can keep multiple-cell band echo and bow echo strengthen and maintain for a long time.
-
Key words:
- weather forecast /
- thunderstorm /
- multiple-cell band echo /
- bow echo /
- gust front /
- meso-β-scale convergence shear
-
图 5 2016年4月11日01:36海口多普勒雷达0.5 °仰角的反射率因子(a)和平均径向速度(b)及沿着图 5中线段走向的A、B、C三个强风暴的反射率因子(c)和平均径向速度(d)的垂直剖面
白色圆圈代表中层径向辐合区。
-
[1] JOHNS R H, HIRT W D. Derechos: Widespread convectively induced windstorms[J]. Wea Forec, 1987, 2(1): 32-49. [2] JOHNS R H, DOSWELL C A Ⅲ. Severe local storms forecasting[J]. Wea Forec, 1992, 7(4): 588-612. [3] FUJITA T T. Tornadoes and downbursts in the context of generalized planetary scales[J]. J Atmos Sci, 1981, 38(8): 1 511-1 524. [4] ATKINS N T, LAURENT M S. Bow echo mesovortices, Part Ⅱ: Their genesis[J]. Mon Wea Rev, 2009, 137(8): 1 514-1 532. [5] 廖晓农, 俞小鼎, 王迎春.北京地区一次罕见的雷暴大风过程特征分析[J].高原气象, 2008, 27(6): 1 350-1 362. [6] 李国翠, 刘黎平, 连志鸾, 等.利用雷达回波三维拼图资料识别雷暴大风统计研究[J].气象学报, 2014, 72(1): 168-181. [7] 王福侠, 俞小鼎, 裴宇杰, 等.河北省雷暴大风的雷达回波特征及预报关键点[J].应用气象学报, 2016, 27(3): 342-351. [8] 王秀明, 周小刚, 俞小鼎.雷暴大风环境特征及其对风暴结构影响的对比研究[J].气象学报, 2013, 71(5): 839-852. [9] 方翀, 俞小鼎, 朱文剑, 等. 2013年3月20日湖南和广东雷暴大风过程的特征分析[J].气象, 2015, 41(11): 1 305-1 314. [10] 俞小鼎, 张爱民, 郑媛媛, 等.一次系列下击暴流事件的多普勒天气雷达分析[J].应用气象学报, 2006, 17(4): 385-393. [11] 吴丹娃, 潘益农, 吴林林, 等. 2011年6月23日沿淮强对流天气中尺度辐合特征模拟研究[J].热带气象学报, 2013, 29(4): 672-680. [12] 杨兆礼, 刘三梅, 万齐林, 等.基于雷达径向风的广东2011年4月17日强对流过程螺旋度特征分析[J].热带气象学报, 2014, 30(4): 763-768. [13] 严仕尧, 李昀英, 齐琳琳, 等.华北产生雷暴大风的动力热力综合指标分析与应用[J].暴雨灾害, 2013, 32(1): 17-23. [14] MOLLER A R, DOSWELL C A Ⅲ, FOSTER M P, et al. The operational recognition of supercell thunderstorm environments and storm structures[J]. Wea Forec, 1994, 9(3): 327-347. [15] 俞小鼎, 姚秀萍, 熊廷南, 等.多普勒天气雷达原理与业务应用[M].北京:气象出版社, 2007:314. [16] 俞小鼎.关于冰雹的融化层高度[J].气象, 2014, 40(6): 649-654. [17] DONALD W M. Windex-a new index for forecasting microburst potential[J]. Wea Forec, 1994, 9(4): 532-541. [18] 王秀明, 俞小鼎, 周小刚. "6.3"区域致灾雷暴大风形成及维持原因分析[J].高原气象, 2012, 31(2): 504-514. [19] SCHMOCKER G. Forecasting the initial onset of damaging downburst winds associated with a mesoscale convective system(MCS) using the midaltitude radial convergence(MARC) signature//Preprints, 15th Conf on Weather Analysis and forecasting[C]. Norfolk, VA: Amer Meteor Soc, 1996: 306-311. [20] DAVIES J R. Streamwise vorticity: The origin of updraft rotation in supercell storms[J]. J Atmos Sci, 2010, 41(20):2 991-3 006. [21] MARKOWSKI P, RICHARDSON Y. What we know and don't know about tornado formation[J]. Physics Today, 2014, 67(9): 26-31. [22] 俞小鼎, 周小刚, 王秀明.雷暴与强对流临近天气预报技术进展[J].气象学报, 2012, 70(3): 311-337. [23] 席宝珠, 俞小鼎, 孙力, 等.我国阵风锋类型与产生机制分析及其主观识别方法[J].气象, 2015, 41(2): 133-142. [24] 阎访, 陈静, 卞韬, 等.一次雷暴大风的物理环境场合多普勒雷达回波特征[J].气象与环境学报, 2013, 29(1): 33-39. [25] 李国翠, 郭卫红, 王丽荣, 等.阵风锋在短时大风预报中的应用[J].气象, 2006, 32(8): 36-42. [26] 姚叶青, 俞小鼎, 张义军.一次典型飑线过程多普勒天气雷达资料分析[J].高原气象, 2008, 27(2): 373-381. [27] 姚建群, 戴建华, 姚祖庆.一次强飑线的成因及维持和加强机制分析[J].应用气象学报, 2005, 16(6): 746-754. [28] 陶岚, 袁招洪, 戴建华, 等.一次夜间弓形回波特征分析[J].气象学报, 2014, 72(2): 220-236. [29] 陈明轩, 王迎春.低层垂直风切变和冷池相互作用影响华北地区一次飑线过程发展维持的数值模拟[J].气象学报, 2012, 70(3): 371-386. [30] 王彦, 于莉莉, 李艳伟, 等.边界层辐合线对强对流系统形成和发展的作用[J].应用气象学报, 2011, 22(3): 724-731. [31] 易笑园, 张义军, 沈永海, 等.一次海风锋触发的多单体雹暴及合并过程的观测分析[J].气象学报, 2012, 29(5): 974-985.