GRIDDED METEOROLOGICAL DATASET WITH A 1-KM RESOLUTION BY USING FOUR DIMENSIONAL DATA ASSIMILATION TECHNIQUE: ESTABLISHMENT OF THE DATA SET AND PRELIMINARY APPLICATIONS
-
摘要: 利用基于张弛逼近的四维数据同化技术,构建了广东深圳的千米格距网格化气象数据集,由于同化了深圳及周边可获得的高频次观测数据,气象数据集基本准确表现出几种关键气象要素的年际变化和月变化特征。在网格化气象数据集基础上开发了“深圳市细网格气候信息平台”,并通过平台推出了若干精细气候数据产品:精细风玫瑰、逐网格风能等。这些数据产品已经在格点气温预报、风能示范项目选址以及详细规划的自然通风评估中发挥了实际作用。这些探索表明,网格化气象数据集的建立,有望为城市的网格化精细管理和建设提供气象科技支撑。Abstract: By using a four-dimensional data assimilation technique based on the nudging method, a gridded meteorological dataset with a resolution of 1 km is established in Shenzhen. The comparison between the model data and the observational data shows that the gridded data can fairly well describe the characteristics of the local climate in Shenzhen, for there have been much observational data with high resolution from multi-sources assimilated in the dataset. Based on the gridded meteorological dataset, the Shenzhen fine-gridded climate information service platform is established, and many fine-scale products on local climate are provided through the platform, i.e. fine-scale wind roses and gridded wind energy distribution. The dataset has already successfully applied in practice such as gridded air temperature prediction, site-selection of wind energy projects and ventilation assessment on detailed urban planning. The current study shows that the establishment of the gridded meteorological dataset can be expected to provide services to gridded municipal management and construction.
-
表 1 SZ-RTFDDA系统参数化方案
表 2 C-FDDA模式系统同化的资料情况简介
资料来源 资料种类 同化时间间隔 广东省、香港、澳门自动气象站 10 min的风速和风向、气温、相对湿度、海平面气压 60 min MICAPS地面气象站 气温、气压、露点温度、风、6 h累积雨量 6 h累积雨量间隔6 h,其余要素间隔3 h MICAPS探空站 气压、高度、温度、露点温度、风向和风速 12 h 深圳自动气象站 10 min的风速和风向、相对湿度、气温、本站气压、
海平面气压、30 min滑动雨量30 min 深圳风廓线 风向、风速和虚温 30 min 其他区域自动气象站 10 min的风速和风向、气温、相对湿度、海平面气压 30 min -
[1] 李磊, 张立杰, 张小丽, 等.地理特征、人口分布及用电负荷对深圳城市热岛的影响分析[J].环境科学学报, 2012, 32(12): 3073-3077. [2] LI L, CHANP W, WANG D L, et al. Rapid urbanization effect on local climate: intercomparison of climate trends in Shenzhen and Hong Kong, 1968—2013[J]. Clim Res, 2015, 63(1): 145-155. [3] 石华. 基于深圳市道路气流特征的城市通风网络模型研究[D]. 重庆: 重庆大学, 2012: 123. [4] 李磊, 吴迪, 张立杰, 等.基于数值模拟的城市街区详细规划通风评估研究[J].环境科学学报, 2012, 32(4): 946-953. [5] ZHANG X L, LI L, DU Y, et al. A numerical study on the influences of the urban planning and construction on the summer urban heat island in the metropolis of Shenzhen[J]. J Trop Meteorol, 2011, 17(4): 392-398. [6] 任超, 吴恩融, KATZSCHNER L, 等.城市环境气候图的发展及其应用现状[J].应用气象学报, 2012, 23(5): 593-603. [7] KALNAY E, KANAMITSU M, KISTLER R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bull Amer Meteorolog Soc, 1996, 77(3): 437-472. [8] DEE D P, UPPALA S M, SIMMONS A J, et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system[J]. Q J Roy Meteorolog Soc, 2011, 137(656): 553-597. [9] LIU Y, WARNER T T, ASTLING E G, et al. The operational mesogamma-scale analysis and forecast system of the US Army test and evaluation command, Part 2: Inter-range comparison of the accuracy of model analyses and forecasts[J]. J Appl Meteorol Climatol, 2008, 47(4): 1093-1104. [10] HAHMANN A N, ROSTKIER-EDELSTEIN D, WARNER T T, et al. A reanalysis system for the generation of mesoscale climatographies[J]. J Appl Meteorol Climatol, 2010, 49(5): 954-972. [11] PAN L, LIU Y, LIU Y, et al. Impact of four-dimensional data assimilation (FDDA) on urban climate analysis[J]. J Adv Mod Ear Sys, 2015, 7(4): 1997-2011. [12] LIN Y L, FARLEY R D, ORVILLE H D. Bulk parameterization of the snow field in a cloud model[J]. J Appl Meteorol Climatol, 1983, 22(6): 1065-1092. [13] MLAWER E J, TAUBMAN S J, BROWN P D, et al. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated k model for the longwave[J]. J Geophys Res, 1997, 102(14): 16663-16682. [14] DUDHIA J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. J Atmos Sci, 1989, 46(20): 3077-3107. [15] HONG S Y, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Mon Wea Rev, 2006, 134(9): 2318-2341. [16] PAN H L, MAHRT L. Interaction between soil hydrology and boundary-layer development[J]. Bound Layer Meteor, 1987, 38(1): 185-202. [17] PAN L, LIU Y, WU Y, et al. Evaluation of AMDAR and AMV data quality and their Impact on RTFDDA analysis and forecasting control at Eastern Mediterranean region[C]//13th WRF workshop. Boulder, CO, 2012: 80301. [18] WU Y H, LIU Y, JACOBSN, et al. An online data quality control procedure with the NCAR RTFDDA System[C]//AMS 92nd Annual Meeting, New Orleans, 2012. [19] PEDRO A J, DUDHIA J. Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model[J]. J Appl Meteorol Climatol, 2012, 51(2): 300-316.