DIAGNOSTIC ANALYSIS OF THERMAL AND DYNAMIC CHARACTERISTICS OF A RAINSTORM PROCESS IN SOUTHERN CHINA
-
摘要: 2015年5月19—20日广东省强降水过程具有降水集中、强度大和局地性强的特点,利用广东省自动气象站观测资料、ECMWF_FINE再分析资料,对此次强降水过程进行分析发现:华南地区受低槽东移影响,强降水发生在切变线南侧偏南暖湿流场中,粤北降水属于锋面降水,粤东降水属于锋前暖区降水,两者在水汽输送和动力机制上有显著区别。孟加拉湾和南海输送的水汽在这次强降水过程中占主导地位,南边界和东边界为水汽的流入边界,整体水汽输送以经向输入为主。暖区降水区域处于较强的水汽平流环境中,具有更大的水汽净输送量,造成粤东地区的降水量更大。对流层高层辐散比中低层辐合更为重要,是粤东暖区降水重要的动力属性,且暖区中低层流场的旋转效应弱,有区别于典型的梅雨锋降水。利用绝热无摩擦湿位涡守恒进行诊断发现对流不稳定是此次强降水发展的主要机制,暴雨发生区域对应湿位涡垂直分量为负值,水平分量为正值,底层MPV1<0和MPV2>0综合反映了大气对流不稳定和斜压不稳定的增强过程。降水区对流层低层受负湿位涡控制,低层湿位涡负值区与强降水落区有较好的对应关系。Abstract: Automatic weather observation data in Guangdong province and ECMWF_FINE reanalysis data are used to analyze a heavy rainfall in the south of China during 19—20 May 2015 with the focus on thermal and dynamic characteristics. The results show that the south of China was affected by an eastward-moving trough and heavy rainfall occurred on the south of a wind shear with a southerly warm airflow. The north rain-band(over the north part of theprovince)resulted from the front system, while the south rain-band(in the northwest part of the province)was in the warm sector of a front. There are significant differences about moisture transportation and power mechanism between the frontal and warm-sector heavy rain. Water vapor from Bay of Bengal and South China Sea played a dominant role in the rainstorm. During the process, the water vapor came in mostly from the southern and eastern boundaries and the whole water vapor transport based mostly on meridional transport. Frontal warm-sector had stronger moisture transport because of the stronger moisture-advection in the front area of strong moisture advection environment. As a result, precipitation over eastern Guangdong became greater. Divergence in upper-troposphere was more important than convergence in low-level, which is the significant dynamic property of precipitation in warm region. Besides, warm region has weaker rotation effects, distinct from the typical Meiyu precipitation. Analysis of the heavy rainfall process in terms of moisture potential velocity(MPV) principle shows that convective instability was the important mechanism for the development of heavy rainfall. The increase in vertical wind shear and moisture barocilinty around the low-level hasa great influence on the development of the vortex. Lower troposphere of rainfall area is controlled by the negative MPV, and the zone with large value of negative MPV has good correspondence with the location of heavy rain.
-
图 5 a. 5月19—20日沿暴雨区(沿图 1a中AB线)平均水汽通量散度垂直剖面(单位:10-5 g/(cm2·hPa·s))b.暴雨区水汽净流入量(右纵坐标,单位:kg/(m·s))与6 h累计降水量(左纵坐标,单位:mm)的时间序列
图 7 19日12时θe沿图 1a中AB线的垂直剖面
横坐标上的粗黑线为广东省暴雨区域。
表 1 暴雨区域整层(地表~300 hPa)水汽的输送情况
单位:kg/(m·s)。 时间 南边界 北边界 东边界 西边界 经向输送 纬向输送 18日12时 74.720 -109.801 49.935 -38.776 -35.081 11.159 19日00时 97.432 -81.025 63.062 -79.567 16.407 -16.505 19日12时 55.09 -0.029 30.296 -5.784 55.061 24.512 20日00时 89.569 -21.554 54.454 -36.840 68.051 17.614 20日12时 70.127 -50.137 -35.561 -12.014 19.990 -47.575 21日00时 21.688 -21.197 17.439 -13.529 19.990 3.910 -
[1] 林良勋, 冯业荣, 黄忠.广东省天气预报技术手册[M].北京:气象出版社, 2006: 239-245. [2] 李真光, 梁必骐, 包澄澜. 华南前汛期暴雨的成因与预报问题[C]//华南前汛期暴雨文集. 北京: 气象出版社, 1981: 1-8. [3] 谢安, 宋焱云, 毛江玉, 等.南海夏季风期间水汽输送的气候特征[J].气候与环境研究, 2001, 6(4): 425-434. [4] 史学丽, 丁一汇. 1994年中国华南大范围暴雨过程的形成与夏季风活动的研究[J].气象学报, 2000, 58(6): 666-678. [5] 池艳珍, 何金海, 吴志伟.华南前汛期不同降水时段的特征分析[J].南京气象学院学报, 2005, 28(2): 163-171. [6] 寿绍文, 李耀辉, 范可.暴雨中尺度气旋发展的等嫡面位涡分析[J].气象学报, 2001, 59(5): 560-567. [7] 段旭, 李英.滇中暴雨的湿位涡诊断分析[J].高原气象, 2000, 19(2): 253-259. [8] HOSKINS B J, MCINTYRE M E, ROBERTSON A W. On the use and significance of isentropic potential vorticity maps[J]. Q J Roy Meteorolog Soc, 1985, 111(470): 877-946. [9] MOLINARI J, SKUBIS S, VOLLARO D, et al. Potential vorticity analysis of tropical cyclone intensification[J]. J tmos Sci, 1998, 55(16): 2 632-2 644. [10] 黄亿, 寿绍文, 傅灵艳.对一次台风暴雨的位涡与湿位涡诊断分析[J].气象, 2009, 35(1): 65-73. [11] 李耀辉, 寿绍文.一次江淮暴雨的MPV及对称不稳定研究[J].气象科学, 2000, 20(2): 171-178. [12] 蒙伟光, 王安宇, 李江南, 等.华南暴雨中尺度对流系统的形成及湿位涡分析[J].大气科学, 2004, 28(3): 330-341. [13] 文莉娟, 程麟生, 左洪超, 等. "98.5"华南前汛期暴雨的湿位涡异常诊断:质量和热力强迫的数值分析[J].热带气象学报, 2006, 22(5): 447-453. [14] 杨红梅, 徐宝祥. GPS资料在天气分析中的应用[J].气象科技, 2000(4): 32-34. [15] 陈长胜, 林开平, 王盘兴.华南前汛期降水异常与水汽输送的关系[J].南京气象学院学报, 2004, 27(6): 721-727. [16] 丁一汇. 1991年江淮流域持续性特大暴雨研究[M].北京:气象出版社, 1993: 255. [17] 吴国雄, 蔡雅萍, 唐晓菁.湿位涡和倾斜涡度发展[J].气象学报, 1995, 53(4): 387-404. [18] 吴国雄, 蔡雅萍.风垂直切变和下滑倾斜涡度发展[J].大气科学, 1997, 21(3): 273-282. [19] BENNETTS D A, HOSKINS B J. Conditional symmetric instability——A possible explanation for frontal rainbands[J]. Q J Roy Meteorolog Soc, 1979, 105(446): 945-962.