A COMPARISON OF THE ROSSBY WAVE ACTIVITIES AND CIRCULATION FEATURES OF THE DROUGHT IN WINTER-SPRING OF 2011 AND IN SUMMER OF 2013 OVER MID-LOWER REACHES OF THE YANGTZE RIVER BASIN
-
摘要: 利用1981—2013年NCEP/NCAR逐日再分析资料及OISST海温月资料,对长江中下游地区2011年冬春连旱及2013年夏季高温、干旱事件的形成机制进行对比分析。结果发现两次干旱事件:(1)均受偏强东亚季风影响,导致冷暖气流无法交汇于长江流域;(2)赤道太平洋海温距平均呈现“西正东负”,加强Walker环流的同时引发局地Hadley环流异常,致使长江流域上空长期受异常下沉气流控制;(3)均与大西洋的Rossby波有关:2011年冬春,受NAULEA遥相关型影响,Rossby波能量向东频散至亚欧大陆东部及太平洋地区堆积,使东亚大槽长期维持在120 °E附近,加强东亚冬季风;2013年夏季,受同为负位相的“silk road”及EAP遥相关型共同作用,源自北大西洋的Rossby波能量能够影响到东亚-太平洋地区,致使西太副高异常西伸,加强东亚夏季风。Abstract: Using the daily NCEP/NCAR reanalysis dataset and monthly OISST sea surface temperature data from 1981—2013, the formation mechanism of drought eventsin winter-spring 2011 and summer 2013 in the middle and lower reaches of the Yangtze River Region (MLRYR) is investigated. The results show that both the drought events have the following common points: (1) they were both affected by a strong East Asian monsoon, so the cold and warm air could not converge in the Yangtze River Basin, resulting in the lack of precipitation for this region; (2) the equatorial Pacific SST showed a pattern of "positive in the west versus negative in the east", which strengthened the Walker circulation and caused local Hadley circulation anomalies at the same time, making the MLRYR controlled by abnormal sinking airflow for a long time and the conditions insufficient for producing precipitation; (3) both the events were associated with Rossby waves from the Atlantic ocean. Influenced by NAULEA teleconnection pattern, Rossby wave energy propagated eastward to the east of Eurasian and Pacific region, an East Asia trough maintained in the vicinity of 120 °E for a long time, which strengthened the East Asian winter monsoon and further affected the precipitation of MLRYR in the winter-spring of 2011. With the mutual influence of the negative phases by teleconnections of Silk Road and EAP, the Rossby wave energy accumulated in the eastern Eurasian continent and the Pacific, resulting in WPSH extending abnormally westward, which strengthened the East Asian summer monsoon and further affected the precipitation of MLRYR in summer of 2013.
-
Key words:
- mid-lower reaches of the Yangtze River Basin /
- drought /
- Rossby waves /
- teleconnection
-
图 4 同图 3,但为SST距平
单位:℃。
-
[1] 杨金虎, 张强, 王劲松, 等.近60年来西南地区旱涝变化及极端和持续性特征认识[J].地理科学, 2015, 35(10): 1 333-1 340. [2] 黄荣辉, 蔡榕硕, 陈际龙, 等.我国旱涝气候灾害的年代际变化及其与东亚气候系统变化的关系[J].大气科学, 2006, 30(5): 730-743. [3] YU M, LI Q, HAYES M J, et al. Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index: 1951-2010? [J]. Internat J Climatol, 2014, 34(3): 545-558. [4] LI Y, REN F, LI Y, et al. Characteristics of the regional meteorological drought events in Southwest China during 1960—2010[J]. J Meteor Res, 2014, 28(3): 381-392. [5] 符淙斌, 马柱国.全球变化与区域干旱化[J].大气科学, 2008, 32(4): 752-760. [6] 黄荣辉, 顾雷, 陈际龙, 等.东亚季风系统的时空变化及其对我国气候异常影响的最近研究进展[J].大气科学, 2008, 32(4): 691-719. [7] 张强, 张良, 崔显成, 等.干旱监测与评价技术的发展及其科学挑战[J].地球科学进展, 2011, 26(7): 763-778. [8] JIN D, GUAN Z, TANG W. The extreme drought event during winter-spring of 2011 in East China: Combined influences of teleconnection in midhigh latitudes and thermal forcing in maritime continent region[J]. J Clim, 2013, 26(20): 8 210-8 222. [9] 王文, 李亮, 蔡晓军. CI指数及SPEI指数在长江中下游地区的适应性分析[J].热带气象学报, 2015, 31(3): 403-416. [10] 李震坤, 孙国武, 信飞. 2011年5、6月长江中下游旱涝转折的大气低频特征及其预报[J].热带气象学报, 2014, 30(1): 194-200. [11] 新华网. http://www.cma.gov.cn/2011xwzx/2011xqxxw/2011xqxyw/201308/t20130813_222898.html. [12] 中国气象局. http://www.cma.gov.cn/2011xwzx/2011xmtjj/201308/t20130820_223737.html. [13] 曾剑, 张强, 王同美.东亚冬季风与中国南方冬季降水的关系分析[J].高原气象, 2010, 29(4): 975-981. [14] 陶诗言.冬季由印缅来的低槽对于华南天气的影响[J].气象学报, 1953(1):172-192. [15] 陶诗言, 张庆云.亚洲冬夏季风对ENSO事件的响应[J].大气科学, 1998(4): 399-407. [16] OSHIKA M, TACHIBANA Y, NAKAMURA T. Impact of the winter North Atlantic Oscillation(NAO) on the Western Pacific(WP) pattern in the following winter through Arctic sea ice and ENSO: part Ⅰ-Observational evidence[J]. Clim Dyn, 2015, 45(5-6):1 355-1 366. [17] 帅嘉冰, 郭品文, 庞子琴.中国冬季降水与AO关系的年代际变化[J].高原气象, 2010, 29(5): 1 126-1 136. [18] LI J, YU R, ZHOU T. Teleconnection between NAO and climate downstream of the Tibetan Plateau[J]. J Clim, 2008, 21(18): 4 680-4 690. [19] 刘毓赟, 陈文.北半球冬季欧亚遥相关型的变化特征及其对我国气候的影响[J].大气科学, 2012, 36(2): 423-432. [20] 杨双艳, 武炳义, 张人禾, 等.冬季欧亚中高纬大气低频振荡的传播及其与欧亚遥相关型的关系[J].大气科学, 2014, 38(1): 121-132. [21] 张自银, 龚道溢, 郭栋, 等.我国南方冬季异常低温和异常降水事件分析[J].地理学报, 2008, 63(9): 899-912. [22] 李文铠, 何金海, 祁莉, 等. MJO对华南前汛期降水的影响及其可能机制[J].热带气象学报, 2014, 30(5): 983-989. [23] 况雪源, 张耀存.东亚副热带西风急流位置异常对长江中下游夏季降水的影响[J].高原气象, 2006, 25(3): 382-389. [24] 布和朝鲁, 施宁, 纪立人, 等.梅雨期EAP事件的中期演变特征与中高纬Rossby波活动[J].科学通报, 2008(1): 111-121. [25] 施宁, 布和朝鲁, 纪立人, 等.中高纬Rossby波活动对盛夏东亚/太平洋事件中期演变过程的影响[J].大气科学, 2009, 33(5): 1 087-1 100. [26] 贺懿华, 金琪, 王晓玲, 等.南海和青藏高原TBB的低频振荡与湖北省"二度梅"的关系[J].热带气象学报, 2007, 23(1): 59-64. [27] 黄荣辉, 皇甫静亮, 刘永, 等.从Rossby波能量频散理论到准定常行星波动力学研究的发展[J].大气科学, 2016, 40(1): 3-21. [28] 梅伟, 杨修群.我国长江中下游地区降水变化趋势分析[J].南京大学学报:自然科学版, 2005, 41(6): 577-589. [29] 康俊. 江苏省气候变化与干旱研究[D]. 南京: 南京信息工程大学, 2008. [30] 柳艳菊, 马开玉, 李永康.长江中下游地区汛期降水量异常与旱涝趋势[J].南京大学学报(自然科学版), 1998(6): 701-711. [31] 李明, 祝从文, 庞轶舒. 2011年春夏季长江中下游旱涝急转可能成因[J].气象与环境学报, 2014(4): 70-78. [32] 王朋岭, 周兵, 韩荣青, 等. 2011年海洋和大气环流异常及对中国气候的影响[J].气象, 2012, 38(4): 472-479. [33] 杨涵洧, 封国林. 2013年盛夏中国持续性高温事件诊断分析[J].高原气象, 2016, 35(2): 484-494. [34] 孙建奇. 2013年北大西洋破纪录高海温与我国江淮-江南地区极端高温的关系[J].科学通报, 2014, 59(27): 2 714-2 719. [35] 彭京备, 刘舸, 孙淑清. 2013年我国南方持续性高温天气及副热带高压异常维持的成因分析[J].大气科学, 2016, 40(5):897-906. [36] WANG W, ZHOU W, LI X, et al. Synoptic-scale characteristics and atmospheric controls of summer heat waves in China[J]. Clim Dyn, 2016, 46(9-10): 2 923-2 941. [37] REYNOLDS R W, RAYNER N A, SMITH T M, et al. An improved in situ and satellite SST analysis for climate[J]. J Clim, 2002, 15(13): 1 609-1 625. [38] TAKAYA K, NAKAMURA H. A formulation of a wave-activity flux of stationary Rossby waves on a zonally varying basic flow[J]. Geophys Res Lett, 1997, 24(23): 2 985-2 988. [39] TAKAYA K, NAKAMURA H. A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow[J]. J Atmos Sci, 2001, 58(6): 608-627. [40] HOSKINS B J, KAROLY D J. The steady linear response of a spherical atmosphere to thermal and orographic forcing[J]. J Atmos Sci, 1981, 38(6): 1 179-1 196.