EFFECTS OF THE PARAMETERIZATION SCHEME OF DRAG COEFFICIENT ON THE SIMULATION OF TYPHOON WIND FIELD IN ENGINEERING APPLICATIONA
-
摘要: 基于台风边界层的最新观测和研究成果,提出了最大风速半径、边界层风速比、拖曳系数等关键参数的经验方案,并依据垂直平均水平运动方程,建立适用于西北太平洋的工程台风风场模型,最高分辨率为2 km。通过理想试验,验证了所建模型的合理性,并重点关注模拟风场对拖曳系数参数化方案的敏感性。结果表明,不同拖曳系数参数化方案(增长型、饱和型、下降型)对强台风内核区的风场模拟有显著影响,但对最大风速的模拟影响不大。为验证所建模型对实际西北太平洋台风的适用性,选取台风“海葵”(1211)进行个例试验,得到最大风速的平均误差为-0.36 m/s,均方根误差为2.22 m/s。进一步选取我国沿海6个受“海葵”影响的测站,进行模拟风向、风速与观测的对比分析,发现所建台风风场模型能很好地模拟出台风影响过程中的风向转变,但各测站的风速均方根误差在1.61~6.92 m/s之间。较大的风速误差主要出现在位于台风中心附近的测站,意味着我国沿海复杂地形对台风的衰减作用在模型中考虑不足,是未来的改进方向。Abstract: Based on the vertically average equation of motion in the boundary layer, a typhoon wind field model is established for engineering application. A four-level nest grid system is used with the highest resolution being 2 km. The expressions of the radius of maximum wind speed, the wind speed ratio and the surface drag coefficient (CD) are specified based on the observation and research findings of the typhoon boundary layer over the past decade. An idealized experiment is performed to verify the rationality of the model, and special attention is paid to the sensitivity of the wind field to the parameterization schemes of CD. Results show that the change in CD mainly affects the wind field in the inner core region of strong typhoons. but has no significant impact on the maximum wind speeds. Typhoon Haikui (No.1211) is then simulated in order to verify the applicability of the model to the typhoon in the western North Pacific region. The mean error of the maximum wind speeds is just -0.36 m/s, and the root mean square error (RMSE) is 2.22 m/s. The model can also simulate quite well the changes in wind directions of six meteorological stations in the East China when affected by Haikui. The RMSE of wind speeds is between 1.61 m/s and 6.92 m/s. Large errors appear at the stations near the center of typhoon, implying that the model dose not take adequate consideration to the complex terrain of East China, and needs further improvement in the future.
-
Key words:
- synoptics /
- typhoon wind field /
- typhoon wind field model /
- drag coefficient /
- wind risk assessment
-
表 1 最大风速半径Rmax(单位:n mile)与最大风速Vmax(单位:kts)的关系式
风速范围/ kts 关系式 < 34 Rmax=0.076 8×Vmax+41.733 4 34~50 Rmax=-0.759 4×Vmax+67.007 3 50~64 Rmax=-0.423 5×Vmax+47.535 8 ≥64 Rmax=-0.085 2×Vmax+26.204 8 表 2 1 h与2 min的平均风速的转换系数
区域 内陆 沿海 远海 G120, 360 0 1.19 1.15 1.07 表 3 拖曳系数参数化试验的Vmax和Rmax模拟结果
组别 类别 输入值 模拟值 增长型 饱和型 下降型 A 最大风速Vmax/(m/s) 40 41.49 41.63 41.76 最大风速半经Rmax/km 35.62 38.47 38.47 38.47 В 最大风速Vmax/(m/s) 55 54.15 54.90 55.60 最大风速半经Rmax/km 30.77 32.56 32.98 34.53 С 最大风速Vmax/(m/s) 70 67.04 67.85 68.79 最大风速半经Rmax/km 25.93 26.31 28.28 30.07 表 4 台风“海葵”影响时期各测站风向、风速的模拟误差
台风要素 误差类别 宝山 大陈 定海 杭州 嵊涧 石浦 风向/° 平均误差 24.01 24.52 30.28 38.33 26.66 20.30 均方根误差 28.85 28.32 37.11 47.60 31.27 26.65 风速/(m/s) 平均误差 -0.54 -2.78 0.34 2.29 -3.46 1.63 均方根误差 1.61 6.42 2.78 5.01 3.96 6.92 表 5 台风“海葵”7日20时—8日14时的Rmax(单位:km)输入值及模拟值
日期 7日20时 8日02时 8日08时 8日14时 输入Rmax 34.00 34.97 37.23 37.88 模拟Rmax 40.49 32.56 28.64 27.78 -
[1] 肖玉风, 肖仪清, 段忠东, 等. CE风场模型在中国华南沿海地区的适用性研究[J].工程力学, 2010, 27(10): 251-256. [2] LI S H, HONG H P. Observations on a hurricane wind hazard model used to map extreme hurricane wind speed[J]. J Struct Engin, 2015, 141(10): 04014238. [3] LI S H, HONG H P. Typhoon wind hazard estimation for China using an empirical track model[J]. Natural Hazards, 2016, 82(2): 1 009-1 029. [4] VICKERY P J, SKERLJ P F, STECKLEY A C, et al. Hurricane wind field model for use in hurricane simulations[J]. J Struct Engin, 2000, 126(10): 1 203-1 221. [5] 方伟华, 林伟.面向灾害风险评估的台风风场模型研究综述[J].地理科学进展, 2013, 32(6): 852-867. [6] HOLLAND G J. An analytic model of the wind and pressure profiles in hurricanes[J]. Mon Wea Rev, 1980, 108(8): 1 212-1 218. [7] BATTS M E, RUSSELL L R, SIMIU E. Hurricane wind speeds in the United States[J]. J Struct Div, 1980, 106(10): 2 001-2 016. [8] SHAPIRO L J. The asymmetric boundary layer flow under a translating hurricane[J]. J Atmos Sci, 1983, 40(8): 1 984-1 998. [9] GEORGIOU P N. Design wind speeds in tropical cyclone-prone regions[D]. London: The University of Western Ontario, 1986: 27-84. [10] CARDONE V J, GREENWOOD C V, GREENWOOD J A, et al. Unified program for the specification of hurricane boundary layer winds over surfaces of specified roughness[R]. Washington DC: US Army Corps of Engineers, 1992: 12-35. [11] CHOW S. A study of the wind field in the planetary boundary layer of a moving tropical cyclone[D]. New York: New York University, 1971. [12] 陈孔沫.一种计算台风风场的方法[J].热带海洋学报, 1994, 13(2): 41-48. [13] SMITH S D. Wind stress and heat flux over the ocean in gale force winds[J]. J Phys Oceanogr, 1980, 10(5): 709-726. [14] WU J. Wind-stress coefficients over sea surface near neutral conditions——A revisit[J]. J Phys Oceanogr, 1980, 10(5): 727-740. [15] DONELAN M A, HAUS B K, REUL N, et al. On the limiting aerodynamic roughness of the ocean in very strong winds[J]. Geophys Res Lett, 2004, 31(18): :355-366. [16] POWELL M D, VICKERY P J, REINHOLD T A. Reduced drag coefficient for high wind speeds in tropical cyclones[J]. Nature, 2003, 422(6 929): 279-283. [17] BLACK P G, D'ASARO E A, DRENNAN W M, et al. Air-sea exchange in hurricanes: synthesis of observations from the coupled boundary layer air sea transfer experiment[J]. Bull Amer Meteorolog Soc, 2007, 88(3): 357-374. [18] 赵中阔, 梁建茵, 万齐林, 等.强风天气条件下海气动量交换参数的观测分析[J].热带气象学报, 2011, 27(6): 899-904. [19] 方平治, 赵兵科, 张帅, 等.中等到强风条件下近海拖曳系数随风速变化的观测[J].热带气象学报, 2015, 31(5): 713-720. [20] LU X Q, YU H, LEI X. Statistics for size and radial wind profile of tropical cyclones in the western north pacific[J]. Acta Meteorolog Sin, 2011, 25(1): 104-112. [21] YING M, ZHANG W, YU H, et al. An overview of the china meteorological administration tropical cyclone database[J]. J Atmos Oceanic Technol, 2014, 31(2): 287-301. [22] POWELL M, SOUKUP G, COCKE S, et al. State of florida hurricane loss projection model: atmospheric science component[J]. J Wind Engin Industr Aerodyn, 2005, 93(8): 651-674. [23] VICKERY P J, WADHERA D. Statistical models of Holland pressure profile parameter and radius to maximum winds of hurricanes from flight-level pressure and H*Wind data[J]. J Appl Meteorol Climatol, 2008, 47(10): 2 497-2 517. [24] 林伟, 方伟华.西北太平洋台风风场模型中Holland B系数区域特征研究[J].热带地理, 2013, 33(2): 124-132. [25] 赵林, 潘晶晶, 梁旭东, 等.台风边缘/中心区域经历平坦地貌时平均风剖面特性[J].土木工程学报, 2016, 49(8): 45-52. [26] HARPER B A, KEPERT J D, GINGER J D. Guidelines for converting between various wind averaging periods in tropical cyclone conditions[S]. Australia: World Meteorological Organization, 2009: 3-4. [27] ZHAO Z K, LIU C X, LI Q, et al. Typhoon air-sea drag coefficient in coastal regions[J]. J Geophys Res Oceans, 2015, 120(2): 716-727.