AN APPLICATION ANALYSIS OF THE GROUND-BASED MICROWAVE RADIOMETERS OBSERVATION IN LIGHTNING POTENTIAL PREDICTABILITY
-
摘要: 在利用对流参数建立湖北省雷电潜势预报的基础上,重点研究地基微波辐射计资料在改进雷电潜势预报中的应用价值,继而修正对流参数及其阈值区间,由此建立一种可通过后续参数订正实现的雷电短期潜势预报方法。首先对2013年4月29日一次西南涡东移造成的雷电过程中地基微波辐射计资料的可靠性进行了分析,继而通过比较基于单一数值模式和微波辐射计资料计算的不稳定参数与雷电活动的相关性后发现,85%以上的雷电样本活跃在K指数≥33 ℃、T850-500≥23 ℃、A指数≥10 ℃和ΔTd850≤3 ℃等指数范围内,而微波辐射计资料计算的6个不稳定指数显示,与雷电密集区对应的指数中,和雷电相关性较高的K指数、T850-500、A指数分别为35 ℃、25 ℃和12 ℃,使用两种阈值分别对雷电潜势预报方程中的预报因子进行0,1化。个例检验效果表明地基微波辐射计在改进雷电潜势预报落区和概率方面有一定参考作用。Abstract: Based on the establishment of Hubei lightning potential forecast using convection parameters, we mainly studied the ground-based microwave radiometers data in improving the application value of lightning potential forecast. The convection parameter and threshold were then modified, and then a lightning potential forecast method was formed by a correction parameter. With the data collected by the ground-based microwave radiometers in Wuhan and Jingzhou stations operated by the Institute of Heavy Rain, CMA, the characteristics of vapor density, atmospheric liquid content, relative humidity and instability index measured by the microwave radiometers during a thunderstorm on April 29 2013 were analyzed. In this paper, the data reliability of the ground-based microwave radiometers was first analyzed, and then by comparing the correlation of convection parameters based on numerical model and microwave radiometers data, the instability index based on numerical model displays that K≥33 ℃, T850-500≥23 ℃, A≥10 ℃ and ΔTd850≤3 ℃ have a good correlation with the lightning, but the K index, A index and T850-500 are different from the microwave radiometers, respectively above 35 ℃, 25 ℃and 20 ℃, compared with the lightning potential predictability calculated by the instability index of two groups with different thresholds. The results show that the ground-based microwave radiometers data have a certain value of reference in the improvement of lightning potential predictability.
-
表 1 2013年4月28—29日系统配置及宜昌探空站的不稳定指数
不稳定指数 28日 29日 14时 20时 02时 08时 14时 20时 500 hPa槽线 99.96 °E 102.55 °E 105.92 °E 107.46 °E 109.25 °E 113.92 °E 700 hPa西南涡强度 302 gpm 305 gpm 307 gpm 307 gpm 308 gpm 307 gpm 700 hPa西南涡位置 101.82 °E, 103.74 °E, 105.57 °E, 106.76 °E, 108.94 °E, 112.62 °E, 32.20 °N 32.09 °N 31.33 °N 29.65 °N 29.04 °N 28.90 °N 700 hPa冷切 99.83 °E 101.26 °E 105.87 °E 107.35 °E 108.88 °E 112.51 °E 700 hPa暖切 33.22 °N 33.32 °N 32.07 °N 31.08 °N 30.84 °N 30.57 °N 700 hPa西南急流/(m/s) - 12 12 16 14 14 K指数/℃ 19 25 29 39 32 20 对流有效位能CAPE/(J/kg) 361 427 256 915 2 0 对流抑制能量CIN/(J/kg) -29.6 -65.5 -80 -69 -0.2 2.09 925 hPa水汽通量散度/(g/(cm2.hPa.s)) 2.56 -7.18 -6.35 -26.89 5.45 4.17 表 2 NCEP和微波辐射计资料与雷电相关性较大的对流参数临界阈值、相关系数及其0,1化
统计量 预报因子 K指数/℃ SI/℃ ΔTd 850/℃ ΔTd700/℃ T850-500/℃ A指数/℃ ω850/(Pa/s) NCEP资料临界阔值 ≥33取1, ≤0取1, ≤3取1, ≤3取1, ≥23取1, ≥10取1, ≤0取1, 否则取0 否则取0 否则取0 否则取0 否则取0 否则取0 否则取0 微波辐射计临界阔值 ≥35取1, - ≤3取1, - ≥25取1, ≥12取1, - 否则取0 否则取0 否则取0 否则取0 r 0.154 0.142 0.146 0.131 0.097 0.061 0.053 注: SI、ΔTd850、ΔTd700、T850-500、ω850分别为沙氏指数、850 hPa温度露点差、700 hPa温度露点差、850 hPa与500 hPa温差、850 hPa垂直速度;r为各因子与雷电是否发生的相关系数。 -
[1] GREMILLION M S, ORVILLE R E. Thunderstorm characteristics of cloud-to-ground lightning at the Kennedy Space Center, Florida: Astudy of lightning initiation signatures as indicated by the WSR- 88D[J]. Wea Forecasting, 1999, 14(5): 640-649. [2] CHOWDHURI P, ANDERSON J G, CHISHOLM W A, et al. Lightning and insulator subcommittee of the T&D committee. Parameters of lightning strokes: a review[J].IEEE Transactions on Power Delivery, 2005, 20(1): 346-358. [3] ROEDER W P, PINDER C S. Lightning forecasting empirical techniques for central Florida in Support of America. s Space Program[C]//16th Conference on Weather Analysis and Forecasting, 1998: 475-477. [4] 许小峰, 郭虎, 廖晓农, 等.国外雷电监测和预报研究[M].北京:气象出版社, 2003. [5] 孟青, 葛润生, 朱小燕. SAFIR闪电监测和预警系统[J].气象科技, 2002(3):135-138. [6] MANSELL E R, ZIEGLER C L, MAEGORMAN D R. A lightning data as similation teehnique for mesoseale foreeast models[J]. Mon Wea Rev, 2007, 135(5):1732-1748. [7] 王新敏, 张霞, 徐文明, 等. T213/T639数值产品在河南省雷电潜势预报中的释用[J].气象, 2011, 37(5): 576-582. [8] 曾淑玲, 巩崇水, 赵中军, 等.动力一统计方法在24小时雷暴预报的应用[J].气象, 2012, 38(12): 1508-1514. [9] 赵声蓉, 赵翠光, 邵明轩.事件概率回归估计与降水等级预报[J].应用气象学报, 2009, 20(5): 521-529. [10] 熊亚军, 廖晓农, 于波, 等.基于天气分型的北京地区雷电潜势预报预警系统[J].灾害学, 2012, 27(2): 67-81. [11] KNUPP K R, COLEMAN T, PHILLIPS D, et al. Ground-based passive microwave profiling during dynamic weather conditions[J]. Atmos Ocean Technol, 2009, 26(6): 1057-1073. [12] 刘黎平, 吴林林, 杨引明.基于模糊逻辑的分步式超折射地物回波识别方法的建立和效果分析[J].气象学报, 2007, 65(2): 252-260. [13] 万玉发, 吴翠红, 金鸿祥.基于准同雨团样本概念雷达和雨量计的实时同步结合方法[J].气象学报, 2008, 66(2): 262-273. [14] DOMINIQUE R, NASH J, JEANNET P, et al. The COST 720 temperature, humidity, and cloud profiling campaign: TUC[J]. Meteorologische Zeitschrift, 2006, 1: 5-10. [15] 王叶红, 赖安伟, 赵玉春.地基微波辐射计资料同化对一次特大暴雨过程影响的数值试验研究[J].暴雨灾害, 2010, 29(3): 201-207. [16] 唐仁茂, 李德俊, 向玉春, 等.地基微波辐射计对咸宁一次冰雹天气过程的监测分析[J].气象学报, 2012, 70(4): 806-813. [17] 黄治勇, 徐桂荣, 王晓芳, 等.地基微波辐射资料在短时暴雨潜势预报中的应用[J].应用气象学报, 2013, 24(5): 576-584. [18] 黄治勇, 徐桂荣, 王晓芳, 等.基于地基微波辐射计资料对咸宁两次冰雹天气的观测分析[J].气象, 2014, 40(2):216-222. [19] 黄治勇, 周志敏, 徐桂荣, 等.风廓线雷达和地基微波辐射计在冰雹天气监测中的应用[J].高原气象, 2015, 34(1): 269-278. [20] 雷恒池, 魏重, 沈志来, 等.微波辐射计探测降雨前水汽和云液水[J].应用气象学报, 2011, 12(增刊): 73-79. [21] CHAN P W. Performance and application of a multi -wavelength, ground -based microwave radiometer in intense convective weather[J]. Meteor Zeits, 2009, 18(3): 253-265. [22] 张文刚, 徐桂荣, 万蓉, 等.基于地基微波辐射计的大气液态水及水汽特征分析[J].暴雨灾害, 2015, 34(4): 367-374. [23] 张文刚, 徐桂荣, 颜国跑, 等.微波辐射计与探空仪测值对比分析[J].气象科技, 2014, 42(5): 737-741. [24] 张文刚, 徐桂荣, 廖可文, 等.降水对地基微波辐射计反演误差的影响[J].暴雨灾害, 2013, 32(1): 70-76. [25] 徐桂荣, 孙振添, 李武阶, 等.地基微波辐射计与GPS无线电探空和GPS/MET的观测对比分析[J].暴雨灾害, 2010, 29(4): 315-321. [26] 殷娴, 肖稳安, 尹丽云.江苏省雷电活动潜势预报研究[J].热带气象学报, 2011, 27(5): 758-764.