METHOD OF TYPHOON DISASTER LOSS ASSESSMENT FOR COUNTY-BASED UNITS IN GUANGDONG
-
摘要: 利用2004—2014年广东省的热带气旋(Tropical Cyclone, TC)降水和大风资料以及TC造成的直接经济损失数据,通过TC经济灾损率的定义,研究了TC直接经济损失与TC降水和大风的关系,并建立评估模型。广东省沿海地区是TC降水和大风影响频繁地区,TC经济灾损率和受灾频次在广东西南部和东部沿海地区较大。TC经济灾损率与TC降水和大风之间存在较好的指数关系。由此得到不同等级经济灾损率对应的气象因素致灾阈值。利用此气象因素致灾阈值可以对县域单元的TC直接经济损失进行评估。对2004—2014年广东省TC造成的直接经济损失的模拟结果表明,该方法能较好地评估广东的县域单元TC经济损失。Abstract: The precipitation, high winds (with wind speed at least 10.8m/s) and direct economic losses caused by tropical cyclones (TCs) in Guangdong during 2004-2014are studied to disclose the relationships between the influence of TCs and meteorological factors, and build an assessment model for the influence of TCs. The seashore areas of Guangdong are affected frequently by the TCs precipitation and high winds and the economic loss rates and the disaster frequencies are much bigger in the southwestern and eastern seashore areas of Guangdong. There are good power law relations between the economic loss rates and the TCs precipitation and high winds. According to the power law relations, the meteorological condition threshold can be calculated for the different level of economic loss rates. Then the meteorological condition threshold can be used to assess the influence of TCs. The evaluations of economic loss rates by TCs influencing Guangdong using the meteorological condition threshold during 2004-2014 are compared with the actual economic loss rates. The results show that the assessments are reasonable, which means this method can be used to assess the influence of TCs in Guangdong.
-
Key words:
- tropical cyclones /
- disaster assessment /
- county-based unit /
- economic loss rate
-
表 1 TC经济损失率等级
等级 经济灾损率/% 低 ≤0.02 较低 0.02~0.1 中 0.1~0.5 较高 0.5~4.0 高 > 4.0 表 2 广东省沿海地区TC经济灾损率的气象因素致灾阈值
经济灾损率 低 较低 中 较高 高 过程降水量/mm ≤120 121~140 141~170 171~210 > 210 最大日降水量/mm ≤70 71~90 91~110 111~140 > 140 日最大风速/(m/s) ≤13.5 13.6~14.5 14.6~15.5 15.6~16.5 > 16.5 表 3 广东省内陆地区TC经济灾损率的气象因素致灾阈值
经济灾损率 低 较低 中 较高 高 过程降水量/mm ≤100 101~120 121~150 151~200 > 200 最大日降水量/mm ≤60 61~80 81~100 101~130 > 130 -
[1] 王小玲, 王咏梅, 任福民, 等.影响中国的台风频数年代际变化趋势: 1951—2004年[J].气候变化研究进展, 2006, 2(3): 135-138. [2] 王小玲, 任福民. 1951-2004年登陆我国热带气旋频数和强度的变化[J].海洋预报, 2008, 25(1): 65-73. [3] 赵珊珊, 任福民, 高歌, 等.近十年我国热带气旋灾害的特征研究[J].热带气象学报, 2015, 31(3): 793-800. [4] ZHANG Q, WU L, LIU Q. Tropical cyclone damages in China 1983-2006[J]. Bull Amer Meteorol Soc, 2009, 90(4): 485-495. [5] WATSON C C, JOHNSON M E. Hurricane loss estimation models: opportunities for improving the state of the art[J]. Bull Amer Meteorol Soc 2004, 85(11): 1713-1726. [6] VICKERY P J, SKERLJ P F, LIN J, et al. Hazus-MH hurricane model methodology. II: damage and loss estimation[J]. Nat Hazards Rev, 2006, 7: 94-103. [7] 林继生, 罗金铃.登陆广东的热带气旋评估和预测模式[J].自然灾害学报, 1995, 4(1): 92-97. [8] 樊琦, 梁必骐.热带气旋灾情的预测及评估[J].地理学报, 2000, 55(增刊): 52-56. [9] 马清云, 李佳英, 王秀荣, 等.基于模糊综合评价法的登陆台风灾害影响评估模型[J].气象, 2008, 34(5): 20-25. [10] 李春梅, 罗晓玲, 刘锦銮, 等.层次分析法在热带气旋灾害影响评估模式中的应用[J].热带气象学报, 2006, 22(3): 223-228. [11] 李艳兰, 欧艺, 周绍毅, 等.广西热带气旋灾害评估系统的开发与应用[J].气象研究与应用, 2008, 29(4): 1-3. [12] 钱燕珍, 何彩芬, 杨元琴, 等.热带气旋灾害指数的估算与应用方法[J].气象, 2001, 27(1): 14-18. [13] 何彩芬, 钱燕珍. 2000年浙江省热带气旋灾情评估[J].浙江气象, 2002, 23(2): 4-6. [14] 陈佩燕, 杨玉华, 雷小途, 等.我国台风灾害成因分析及灾情预估[J].自然灾害学报, 2009, 18(1): 64-73. [15] 娄伟平, 陈海燕, 郑峰, 等.基于主成分神经网络的台风灾害经济损失评估[J].地理研究, 2009, 28(5): 1243-1254. [16] ZHANG X C, LOU W P. Estimation of the number of collapsed houses damaged by typhoon based on principal components analysis and support vector machine[J]. Meteorological and Environmental Research, 2010, 1(4):11-14. [17] LOU W P, CHEN H Y, SHEN X L, et al. Fine assessment of tropical cyclone disasters based on GIS and SVM in Zhejiang Province, China[J]. Nat Hazards, 2012, 64(1): 511-529. [18] 任福民, 王小玲, 陈联寿, 等.登陆中国大陆、海南和台湾的热带气旋及其相互关系[J].气象学报, 2008, 66(2): 224-235. [19] 胡娅敏, 宋丽莉, 刘爱君, 等.近58年登陆我国热带气旋的气候特征分析[J].中山大学学报:自然科学版, 2008, 47(5): 115-121. [20] 胡娅敏, 宋丽莉, 罗晓玲.近58年登陆广东热带气旋位置和生成源地的变化[J].中山大学学报:自然科学版, 2011, 50(4): 113-120. [21] 任福民, BYRON G, DAVID E.一种识别热带气旋降水的数值方法[J].热带气象学报, 2001, 17(3): 308-313. [22] REN F, WANG Y, WANG X, et al. Estimating tropical cyclone precipitation from station observations[J]. Adv in Atmo Sci, 2007, 24(4): 700-711. [23] 陆逸, 朱伟军, 任福民, 等. 1980-2014年中国台风大风和台风极端大风的变化[J].气候变化研究进展, 2016, 12(5): 413-421. [24] PIELKE R A, LANDSEA C W. Normalized hurricane Damages in the United States: 1925-1995[J]. Wea Forecasting, 1998, 13(3): 621-631. [25] PIELKE R A, GRATZ J, LANDSEA C W, et al. Normalized hurricane damage in the United States: 1900-2005[J]. Natural Hazards Review, 2008, 9(1): 29-42.