MESOSCALE CHARACTERISTIC ANALYSIS AND PRIMARY DISCUSSION ON THE FORMATION OF THE 7 MAY 2017 TORRENTIAL RAINFALL IN GUANGZHOU
-
摘要: 2017年5月7日发生在广州北部的特大暴雨,局地性强,最大雨强达184.4 mm/h,3 h雨量突破了广东省历史极值,强降水持续时间长,具有明显的中尺度特征。特大暴雨有A区(花都)和B区(增城、黄埔)两个中心,它们在降水特点、地面中尺度特征及触发、对流的发展演变等方面各有特点。由于天气尺度强迫背景弱,数值模式无明显反映,给预报带来了很大的挑战。利用常规及加密自动站、多普勒雷达、风廓线、地基GPS等非常规观测资料,结合ERA-Interim 0.125 °×0.125 °逐6 h再分析资料重点分析和讨论了此次过程的中尺度特征、对流的触发与演变,以期为今后这类暴雨预报提供着眼点。结果表明:(1)此次过程突发性强,降水强度大,A区降水开始时间早,范围较B区小,但B区小时雨强更强,强降水持续时间更长;(2)次天气尺度边界层“7”字型的风压场形势下,脊后回流并加强的偏南风使暖层和湿层增厚,“下密上疏”的温度垂直结构,为强降水的发生提供了有利的环境条件。进入对流云中水汽质量无异常但产生了大量降水,极高的降水效率很可能是对流系统内部云水高效转化的结果,云的微物理过程在形成此次高强度的降水发挥着重要作用;(3)A区强降水发生前暖空气在山前堆积造成升温升压,东、西两支绕流广州城区的气流汇合并在工业区暖中心、山前暖空气堆积具有较高的对流边界层位置触发了对流;(4)B区强降水发生前持续降压并形成中尺度低压槽,A区中尺度对流系统前方入流造成的负变压,与地形强迫造成的风速辐合共同作用触发了B区对流。中尺度反气旋底部的偏北风与偏南、东南两支气流辐合稳定,使强降水长时间维持;(5)回波具有后向传播,垂直顶高低、质心低的热带对流回波特征,降水效率高。降水的拖曳下沉及蒸发冷却使边界层形成冷池,并与前侧暖湿空气相互作用,不断激发新的对流,冷池出流是持续抬升机制,是强降水持续时间长的重要原因。B区冷池厚度、暖湿气流爬升的高度与坡度比A区更大,冷池出流与暖湿气流辐合强度也比A区更强,造成B区雨强更强、持续时间更长,累积雨量更大。Abstract: A torrential rainfall that occurred on 7 May 2017 in Guangzhou was only in a small range, but the strongest rainfall intensity reached 184.4mm/h, and 3h precipitation broke the historical record of Guangdong province. The torrential rainfall lasted for a long time, with obvious mesoscale characteristics and two centers in region A(Huadu) and region B(Huangpu, Zengcheng). They had their own features in precipitation, surface mesoscale field, triggering mechanism and convection evolution. Due to unfavorable weather conditions and unsatisfactory capabilities of numerical models, forecasters were faced with a great challenge. With analysis and discussion of mesoscale convective system environment, triggering conditions and evolution to the torrential rainfall by using conventional data, encrypted automatic meteorological observations, Doppler weather radar, wind profile, ground-based GPS and ERA-Interim 0.125 °×0.125 ° 6h reanalysis data, it is shown as follows. Firstly, the torrential rainfall is characteristic of suddenness and high intensity. Precipitation started initially in region A, but hourly precipitation intensity in region B is stronger and precipitation duration is longer than that of region A. Secondly, atmospheric circulation in boundary layer of sub-synoptic scale is similar to the shape of '7', and vertical temperature gradient is dense at the low level but sparse at the upper level, a southerly thickens the warm layer and humid layer, being favorable for the torrential rainfall. Highly efficient precipitation is closely associated with efficient condensation inside of convective systems, despite lacking considerable water vapor inflow. Micro-physical processes of cloud played an important role in it. Thirdly, warm air accumulated in front of the hill lead to temperature and pressure rising before the rainfall in region A, and two warm air flows around Guangzhou city became confluent and were uplifted by the two warm centers with high convective boundary layer height, triggering the convection. Fourthly, pressure kept dropping and a mesoscale trough formed before rainfall in region B. The inflow to MCS of region A caused the pressure to drop in region B, and local wind speed convergence by the forcing of complex underlying surface was the main triggering mechanism in region B. Northerly wind from the mesoscale high pressure in region B was convergent with the southeasterly and southerly wind for a long time. Fifthly, backward propagation, low-echo top and low-echo-centroid resulted in highly efficient precipitation. A mesoscale cold pool was formed due to the drag and descent of rainfall and cooling from evaporation, and the outflow from the cold pool was the main uplifting mechanism for long-lived precipitation, which continuously generated convective cells. In region B, the cold pool is remarkably thicker and the warm-humid flow ascended higher on a larger slope than in region A, which is the reason why the duration was longer and the accumulated rainfall was larger in region B.
-
Key words:
- torrential rainfall /
- mesoscale characteristics /
- triggering and evolution /
- β-MCS /
- cold pool
-
-
[1] 黄士松.华南前汛期暴雨[M].北京:广东科技出版社, 1986: 244. [2] 林良勋, 冯业荣, 黄忠, 等.广东省天气预报技术手册[M].北京:气象出版社, 2006: 143-152、118. [3] 陈翔翔, 丁治英, 刘彩虹, 等. 2000—2009年5、6月华南暖区暴雨形成系统统计分析[J].热带气象学报, 2012, 28(5): 707-718. [4] 何立富, 陈涛, 孔期.华南暖区暴雨研究进展[J].应用气象学报, 2016, 27(5): 559-569. [5] 许美玲, 段旭, 施晓辉, 等.突发性暴雨的中尺度对流复合体环境条件的个例分析[J].气象科学, 2003, 23(1): 84-91. [6] 何群英, 东高红, 贾慧珍, 等.天津一次突发性局地大暴雨中尺度分析[J].气象, 2009, 35(7): 16-22. [7] 谌芸, 孙军, 徐琣, 等.北京721特大暴雨极端性分析及思考(一)观测分析及思考[J].气象, 2012, 38(10):1 255-1 266. [8] 孙军, 谌芸, 杨舒楠, 等.北京721特大暴雨极端性分析及思考(二)极端性降水成因初探及思考[J].气象, 2012, 38(10): 1 267-1 277. [9] 刘继晨, 钟玮, 刘爽, 等.登陆台风内降水效率变化对降水增幅影响的分析[J].热带气象学报, 2016, 32(2): 193-206. [10] 杨春, 谌芸, 方之芳, 等. "07.6"广西柳州极端暴雨过程的多尺度特征分析[J].气象, 2009, 35(6): 54-62. [11] 孙继松, 雷蕾, 于波, 等.近10年北京地区极端暴雨事件的基本特征[J].气象学报, 2015, 73(4): 609-623. [12] 赵思雄, 周小平.风场在预报暴雨发生中的作用[J].大气科学, 1984, 8(1): 1-6. [13] MENARD R D, FRITSCH J M. A mesoscale convective complex-generated inertially stable warm core coetex[J]. Mon Wea Rev, 1989, 117(6): 1 237-1 261. [14] 李真光, 梁必骐, 包澄澜.华南前汛期暴雨的成因与预报问题[M].北京:气象出版社, 1981. [15] 刘运策, 庄旭东, 李献洲.珠江三角洲地区由海风锋触发的强对流天气过程分析[J].应用气象学报, 2001, 12(4): 433-441. [16] 李麦村.重力波对特大暴雨的触发作用[J].大气科学, 1978, 2(3): 201-209. [17] 马振峰.大气中低频重力波指数与西南涡发展及其与暴雨的关系[J].高原气象, 1994, 13(4): 504-512. [18] 丁德刚, 王树芬.相向而行的重力波与暴雨[J].大气科学, 1994, 18(4): 504-512. [19] 许小峰, 孙照渤.非地转平衡流激发的重力惯性波对梅雨锋暴雨影响的动力学研究[J].气象学报, 2003, 61(6): 655-660. [20] 张雅斌, 马晓华, 薛谌彬, 等. "0812"关中盛夏突发性暴雨中尺度特征分析[J].热带气象学报, 2017, 33(2):187-200. [21] 郭虎, 季崇萍, 张琳娜, 等.北京地区2004年7月10日局地暴雨过程中的波动分析[J].大气科学, 2006, 30(4):703-711 [22] DOSWELL Ⅲ C A, BROOKS H E, MADDOX R A. Flash flood forecasting: An ingredients based methodology[J]. Wea Forecasting, 1996, 11(4): 560-581. [23] DAVIS R S. Flash flood forecast and detection methods[J]. Meteor Monog, 2001, 28(50): 481-526. [24] 俞小鼎.基于构成要素的预报方法——配料法[J].气象, 2011, 37(8): 913-918. [25] 陈元昭, 俞小鼎, 陈训来.珠江三角洲地区重大短时强降水的基本流型与环境参量特征[J].气象, 2016, 42(2): 144-155. [26] 董立清, 任金生, 徐瑞金, 等.黄河中游强暴雨过程的中低纬度环流特征和水汽输送[J].应用气象学报, 1996, 7(2): 160-168. [27] 陈忠明, 闵文彬, 高文良, 等.一次持续性强暴雨过程的平均特征[J].应用气象学报, 2006, 17(3): 273-280. [28] BRAHAM R R J. The water and energy budgets of the thunderstorm and their relation to thunderstorm development[J]. J Atmos Sci, 2010, 9(9): 227-242. [29] 张端禹, 郑彬, 汪小康, 等.华南前汛期持续暴雨环流分型初步研究[J].大气科学学报, 2015, 38(3): 310-320. [30] 宋星灼, 张宏升, 刘新建, 等.青藏高原中部地区不稳定大气边界层高度的确定与分析[J].北京大学学报(自然科学版), 2006, 42(3):328-333. [31] 张强, 张杰, 乔娟, 等.我国干旱区深厚大气边界层与陆面热力过程的关系研究[J].中国科学:地球科学, 2011, 41(9): 1 365-1 374. [32] 徐燚, 闫敬华, 王谦谦, 等.华南暖区暴雨的一种低层重力波触发机制[J].高原气象, 2013, 32(4):1 050-1 061. [33] PARKER M D, JOHNSON R H. Organizational modes of midlatitude mesoscale convective systems[J]. Mon Wea Rev, 2000, 128(10):3 413-3 436. [34] DAVIS C A, LEE W C. Mesoscale analysis of heavy rainfall episodes from SoWMEX/TiMREX[J]. J Atmos Sci, 2012, 69: 521-537. [35] XU W X, ZIPSER E J, CHEN Y L, et al. An orography-associated extreme rainfall event during TiMREX: Initiation, storm evolution and maintenance[J]. Mon Wea Rev, 2015, 140(140): 2 555-2 574. [36] WANG H, LUO Y L, JOU B J D. Initiation, maintenance and properties of convection in an extreme rainfall event during SCMREX: Observational analysis[J]. J Geophys Res, 2014, 119: 13 206-13 232. [37] WU M W, LUO Y L. Mesoscale observational analysis of lifting mechanism of a warmsector convective system producing the maximal daily precipitation in China mainland during pre-summer rainy season of 2015[J]. J Meteor Res, 2016, 30(5): 719-736.