A STUDY OF SENSITIVITY TO THE CHOICES OF VERTICAL MIXING PARAMETERIZATIONS IN A COUPLED ATMOSPHERE-OCEAN-WAVE MODEL
-
摘要: 为了比较两个不同的海洋垂直混合参数化方案在中尺度海气浪耦合模式数值预报中的效果,采用军队T799全球预报系统和西北太平洋海洋预报系统的预报场资料驱动区域中尺度海气浪耦合模式,针对西北太平洋在2014年9月7—10日和17—20日的大气和海洋要素场进行数值回报试验,并将同期台风观测资料、NCEP再分析资料以及NOAA海表面温度数据各自与模式结果进行比较。结果表明,在无台风天气下使用GLS-ε方案对大气要素的预报效果更好,而MY2.5方案在台风天气影响下表现更好,同时其在连续8天的预报中无溢出现象,较GLS-ε方案稳定性更好;台风影响区域的海表面温度对MY2.5方案更敏感;台风天气过程中,MY2.5方案引起的海洋上层温度混合更强烈。Abstract: An experiment was carried out using T799 and ocean forecast system data with the coupled atmosphere-ocean-wave model to simulate atmospheric and oceanic elements fields in the northwest Pacific Ocean in September 2014. The output data was compared with Final operational global analysis (FNL) data, observation data, and NOAA sea surface temperature data. Through calculating RMSE and PCC of a 72 h test and typhoon test, it is concluded that in the case of no typhoon weather, the prediction with the GLS-ε scheme is better, while under the condition of typhoon weather, the prediction with the MY2.5 scheme performs even better. Besides, there is no overflow in the eight-day running time with the MY2.5 scheme, which is more stable than the prediction with the GLS-ε. However, the sea surface temperature influenced by typhoon is more sensitive to the MY2.5 scheme, causing severe temperature mix in the upper layer of the ocean.
-
Key words:
- North-west Pacific Ocean /
- coupled model /
- physical parameterization /
- forecast /
- tropical storm
-
图 7 同图 6,但为台风中心最低气压(单位:hPa)对比
表 1 两种不同垂直混合参数化方案
试验 方案(作者及提出时间) P1 GLS-ε (Rodi,1987) P2 MY2.5(Mellor and Yamada,1982) -
[1] 张进峰, 黄立文, 文元桥, 等.区域大气-海浪-海洋耦合模式的建立[J].武汉理工大学学报(交通科学与工程版), 2011, 35(3): 587-590. [2] GOLAZ J C, WANG S, DOYLE J D, et al. Coamps ®-les: model evaluation and analysis of second-and third-moment vertical velocity budgets[J]. Boundary-Layer Meteorology, 2005, 116(3): 487-517. [3] CAVALLO S M, TORN R D, SNYDER C, et al. Evaluation of the advanced hurricane wrf data assimilation system for the 2009 Atlantic hurricane season[J]. Mon Wea Rev, 2013, 141(2): 523-541. [4] 蒋小平, 刘春霞, 齐义泉.利用一个海气耦合模式对台风Krovanh的模拟[J].大气科学, 2009, 33(1): 99-108. [5] 关皓, 周林, 薛彦广, 等.南海中尺度大气-海流-海浪耦合模式的建立及应用[J].热带气象学报, 2012, 28(2): 211-218. [6] 刘磊, 费建芳, 林霄沛, 等.海气相互作用对"格美"台风发展的影响研究[J].大气科学, 2011, 35(3): 444-456. [7] 汪雷, 王彰贵, 凌铁军, 等.海洋模式中垂直混合参数化方案介绍[J].海洋预报, 2014, 31(5): 93-104. [8] BRYAN F. Parameter sensitivity of primitive equation ocean general circulation models[J]. J Phy Ocean, 1987, 17(7): 970-985. [9] 金向泽, 张学洪, 周天军. Fundamental framework and experiments of the third generation of IAP/LASG world oceangeneral circulation model[J].大气科学进展, 1999, 16(2): 197-215. [10] 李阳春, 徐永福, 赵亮, 等.全球海洋模式中CFC-11吸收对次网格尺度混合参数化的敏感性[J].海洋学报, 2007, 29(3): 31-38. [11] MELLOR G L. A Hierarchy of Turbulence Closure Models for Planetary Boundary Layers[J]. J Atmos Sci, 1974, 31(7): 1 791-1 806. [12] RODI W. Examples of calculation methods for flow and mixing in stratified fluids[J]. J Geophy Res Ocean 1987, 92(C5): 5 305-5 328. [13] UMLAUF L. A generic length-scale equation for geophysical turbulence models[J]. J Mar Res, 2003, 61(2): 235-265. [14] 孙一妹, 费建芳, 程小平, 等. WRF_ROMS-1.2中尺度海气耦合模式简介[J].海洋预报, 2010, 27(2): 82-88. [15] 林夏艳, 管玉平, 刘宇. 2000年秋季东沙冷涡的三维结构及其演化过程[J].热带海洋学报, 2013, 32(2): 55-65. [16] MICHALAKES J, CHEN S, DUDHIA J, et al. Development of a next-generation regional weather research and forecast model[M]// Developments In Teracomputing. 2001: 269-276. [17] SWAN T. SWAN Cycle Ⅲ version 41.01AB User Manual[z]. Delft University of Technology, 2015. [18] 梅婵娟, 赵栋梁, 史剑.两种海浪模式对中国黄海海域浪高模拟能力的比较[J].海洋预报, 2008, 25(2): 92-98. [19] YAMASHITA C, LIU H, CHU X. Gravity wave variations during the 2009 stratospheric sudden warming as revealed by ECMWF-T799 and observations[J]. Geophy Res Lett, 2010, 37(22): 333-345. [20] CHASSIGNET E P, HURLBURT H E, SMEDSTAD O M, et al. US GODAE: Global ocean prediction with the hybrid Coordinate Ocean Model (HYCOM)[J]. Oceanography, 2009, 22(2): 64-75. [21] 李长青, 闰之辉, 王瀛, 等. NCEP-FNL与T213L31同化资料对比分析中的地形差异影响[J].气象, 2007, 33(1): 62-69. [22] http://typhoon.weather.com.cn/ [23] REYNOLDS R W, SMITH T M, LIU C, et al. Daily high-resolution-blended analyses for sea surface temperature[J]. J Clim, 2007, 20(22): 5 473-5 496. [24] ZAMBON J B, HE R, WARNER J C. Investigation of hurricane Ivan using the coupled ocean-atmosphere-wave-sediment transport (COAWST) model[J]. Ocean Dynamics, 2014, 64(11): 1 535-1 554.