ISSN 1004-4965

CN 44-1326/P

用微信扫描二维码

分享至好友和朋友圈

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机载微波大气温度探测仪多高度飞行观测试验结果分析

崔新东 汤鹏宇 姚志刚 赵增亮 孙泽中 谭泉

崔新东, 汤鹏宇, 姚志刚, 赵增亮, 孙泽中, 谭泉. 机载微波大气温度探测仪多高度飞行观测试验结果分析[J]. 热带气象学报, 2019, 35(2): 224-233. doi: 10.16032/j.issn.1004-4965.2019.020
引用本文: 崔新东, 汤鹏宇, 姚志刚, 赵增亮, 孙泽中, 谭泉. 机载微波大气温度探测仪多高度飞行观测试验结果分析[J]. 热带气象学报, 2019, 35(2): 224-233. doi: 10.16032/j.issn.1004-4965.2019.020
Xin-dong CUI, Peng-yu TANG, Zhi-gang YAO, Zeng-liang ZHAO, Ze-zhong SUN, Quan TAN. RESULT ANALYSIS OF OBSERVATIONS BY AIRBORNE MICROWAVE INSTRUMENTS ON MULTI-ALTITUDE FLIGHTS[J]. Journal of Tropical Meteorology, 2019, 35(2): 224-233. doi: 10.16032/j.issn.1004-4965.2019.020
Citation: Xin-dong CUI, Peng-yu TANG, Zhi-gang YAO, Zeng-liang ZHAO, Ze-zhong SUN, Quan TAN. RESULT ANALYSIS OF OBSERVATIONS BY AIRBORNE MICROWAVE INSTRUMENTS ON MULTI-ALTITUDE FLIGHTS[J]. Journal of Tropical Meteorology, 2019, 35(2): 224-233. doi: 10.16032/j.issn.1004-4965.2019.020

机载微波大气温度探测仪多高度飞行观测试验结果分析

doi: 10.16032/j.issn.1004-4965.2019.020
基金项目: 

国家自然科学基金项目 NSFC41575031

国家自然科学基金项目 41175089

中国博士后基金 2015M580124

详细信息
    通讯作者:

    姚志刚,男,湖北省人,博士,主要从事大气遥感研究。Email: yzg_biam@163.com

  • 中图分类号: P407.7

RESULT ANALYSIS OF OBSERVATIONS BY AIRBORNE MICROWAVE INSTRUMENTS ON MULTI-ALTITUDE FLIGHTS

  • 摘要: 机载微波大气温度探测仪可以机动灵活地获取大气温度廓线信息。针对一次机载微波大气温度探测仪的多高度飞行观测试验,基于逐线积分模式和大气参数廓线库,建立用于不同飞行高度的快速辐射传输模式,分析了仪器观测亮温的质量并对仪器观测进行了订正;建立了基于神经网络的微波大气温度廓线反演算式,分析了不同高度、不同通道选择对于大气温度廓线反演性能的影响。研究结果表明:(1)较低飞行高度计算得到的各地表敏感通道地表比辐射率之间具有较好的一致性;(2)采用订正算式订正后,不同飞行高度的模拟亮温与观测亮温具有较好的一致性;(3)机载微波大气温度反演最优通道组合依赖于平台飞行高度;(4)采用最优的通道组合,4 200 m、3 200 m和2 500 m高度层温度反演均方根误差范围分别为0.5~1.8 K、0.5~1.3 K和0.4~1.0 K。

     

  • 图  1  3 200 m高度层第5通道观测亮温

    横坐标为各观测角度依次对应的序号,纵坐标为扫描线条数。

    图  2  3 200 m高度层机载平台的飞行轨迹

    横坐标为经度,纵坐标为纬度。绿线为由北向南平飞区域,黄线为由南向北平飞区域,其余为转弯飞行区域。

    图  3  3 200 m高度层偏差和标准偏差

    a.建立订正算式的10条扫描结果;b.利用订正模式50条扫描线结果。下同

    图  4  4 200 m高度层偏差和标准偏差

    图  5  2 500 m高度层偏差和标准偏差

    图  6  不同角度对反演温度的影响

    横坐标为温度,纵坐标为气压。

    图  7  观测亮温订正后4 200 m高度层不同通道数对反演温度的影响

    横坐标为温度,纵坐标为气压。

    图  8  观测亮温订正后3 200 m高度层不同通道数对反演温度的影响

    横坐标为温度,纵坐标为气压。

    图  9  观测亮温订正后2 500 m高度层不同通道数对反演温度的影响

    横坐标为温度,纵坐标为气压。

    表  1  大气微波温度探测仪通道特性参数

    通道 中心频率/GHz 3 dB带宽/MHz 灵敏度/K 动态范围/K 定标精度/K
    1 50.300 000 180 1.2 3~330 1.5
    2 51.760 000 400 0.9 3~330 1.5
    3 52.800 000 400 0.9 3~330 1.5
    4 53.596 000 400 0.9 3~330 1.5
    5 54.400 000 400 0.9 3~330 1.5
    6 54.940 000 400 0.9 3~330 1.5
    7 55.500 000 330 0.9 3~330 1.5
    8 57.290 344 330 0.9 3~330 1.5
    下载: 导出CSV

    表  2  不同时次对应的探空数据

    气压/hPa 高度/m 10:56:36 11:24:35
    温度/K 相对湿度/% 温度/K 相对湿度/%
    656.4 3 607.6 274.86 73.3 274.99 72.8
    689.3 3 199.6 276.36 64.1 276.64 66.6
    702.7 3 054.6 276.8 71.9 276.54 75.8
    749.1 2 531.4 278.89 77.7 278.85 81.4
    795.1 2 040.9 279.27 86.7 279.06 86.7
    840.0 1 586.9 280.80 93.5 280.13 93.8
    882.8 1 174.9 282.69 94.7 282.73 82.4
    922.5 806.3 285.55 81.7 285.89 73.4
    957.4 493.6 288.06 84.3 287.30 77.5
    下载: 导出CSV

    表  3  2 500 m高度层不同通道计算所得的地表比辐射率

    高度 50.3 GHz 51.76 GHz 52.8 GHz
    2 500 m 0.990 5 0.988 9 0.993 4
    下载: 导出CSV

    表  4  大气温度反演均方根误差(K)整层平均值

    高度层/m 8通道 7通道 6通道 5通道 4通道
    4 200 1.05 0.90 0.99 1.08 1.10
    3 200 1.44 1.08 0.86 0.98 1.12
    2 500 1.06 0.87 0.73 0.74 0.91
    下载: 导出CSV
  • [1] BLACKWELL W J, BARRETT J W, CHEN F W, et al. NPOESS Aircraft Sounder Testbed-Microwave (NAST-M): Instrument description and initial flight results[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2001, 39(11): 2 444-2 453.
    [2] BLACKWELL W J. Retrieval of cloud-cleared atmospheric temperature profiles from hyperspectral infrared and microwave observations[D]. Massachusetts Institute of Technology, 2002.
    [3] JONES D C. Validation of scattering microwave radiative transfer models using an aircraft radiometer and ground-based radar[D]. University of Reading, 1995.
    [4] ENGLISH S J, GUILLOU C, PRIGENT C, et al. Aircraft measurements of water vapour continuum absorption at millimetre wavelengths[J]. Quart J Roy Meteor Soc, 1994, 120(517): 603-625.
    [5] ENGLISH S J. Airborne radiometric observations of cloud liquid-water emission at 89 and 157 GHz: Application to retrieval of liquid-water path[J]. Quart J Roy Meteor Soc, 1995, 121(527): 1 501-1 524.
    [6] GUILLOU C, ENGLISH S J, PRIGENT C, et al. Passive microwave airborne measurements of the sea surface response at 89 and 157 GHz[J]. J Geoph Res, 1996, 101(C2): 3 775-3 788.
    [7] HEWISON T J, ENGLISH S J. Airborne retrievals of snow and ice surface emissivity at millimeter wavelengths[J]. IEEE Trans Geosci Remote Sens, 1999, 37(4): 1 871-1 879.
    [8] HEWISON T J. Airborne measurements of forest and agricultural land surface emissivity at millimeter wavelengths[J]. IEEE Trans Geosci Remote Sens, 2001, 39(2): 393-400.
    [9] MCGRATH A, HEWISON T. Measuring the accuracy of MARSS-an airborne microwave radiometer[J]. J Atmos Ocean Technol, 2001, 18(12): 2 003-2 012.
    [10] LESLIE R V. Temperature profile retrievals with the NAST-M passive microwave spectrometer[D]. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2000.
    [11] SPINA M S, SCHWARTZ M J, STAELIN D H, et al. Application of multilayer feedforward neural networks to precipitation cell-top altitude estimation[J]. IEEE Trans Geosci Remote Sens, 1998, 36(1): 154-162.
    [12] 柏颖, 张祖强, 邵勰. MSU/AMSU微波亮温用于海洋高空大气温度气候变化研究的适用性探讨[J].热带气象学报, 2017, 33(2):221-230.
    [13] 鲍艳松, 王晓丽, 闵锦忠, 等.风云三号卫星微波大气温度探测仪资料偏差订正方法研究[J].热带气象学报, 2014, 30(1): 145-152.
    [14] YAO Z G, CHEN H B, LIN L F. Retrieving atmospheric temperature profiles from AMSU-A data with neural networks[J]. Adv Atmos Sci, 2005, 22(4): 606-616.
    [15] 谭泉, 姚志刚, 赵增亮, 等.多波段微波辐射计反演大气温湿廓线性能分析[J].遥感技术与应用, 2015, 30(1): 170-177.doi:10.11873/j.issn.1004- 0323.2015.1.0170170-177.
    [16] 谭泉, 姚志刚, 赵增亮, 等.机载微波辐射计大气温湿廓线反演性能分析[J].气象水文海洋仪器, 2014, 3: 5-11.
    [17] MAYER B, KYLLING A, EMDE C, et al. LibRadtran User's Guide[M]. 2014: 1-3.
    [18] User's Guide for the Softwave Package SCIATRAN[Z]. Institute of Remote Sensing University of Bremen, Germany, 2007.
    [19] BERK A, BERNSTEIN L S, ROBERTSON D C. MODTRAN: A moderate resolution model for LOWTRAN[Z]. Spectral Sciences Inc., 1987.
    [20] 武永利, 栾青, 田国珍, 等.基于6S模型的FY-3A/MERSI可见光到近红外波段大气校正[J].应用生态学报, 2011, 22(6):1 537-1 542.
    [21] SAUNDERS R. RTTOV-7 Users Guide[EB/OL]. (2002)[2003-05].http://www.metoffice.com/research/interproj/nwpsaf/rtm/.
    [22] 董佩明, 黄江平, 刘桂青. FY-3A微波探测资料的直接同化应用及云雨条件下的亮温模拟[J].热带气象学报, 2014, 30(2): 302-310.
    [23] 张培昌, 王振会.大气微波遥感基础[M].北京:气象出版社, 1995.
    [24] SMITH W L, WOOLF H M. The use of eigenvectors of statistical covariance matrices for interpreting satellite sounding radiometer observations[J]. J Atmos Sci, 1976, 33(7): 1 127-1 140.
    [25] SMITH W L, WOOLF H M, HAYDEN C M, et al. The simultaneous retrieval export package[C]//Technical Proceedings of the Second International TO VS Study Conference, lgls, Austria. 1985: 224-53.
    [26] FLEMING H E, CROSBY D S, NEUENDORFFER A C. Correction of satellite temperature retrieval errors due to errors in atmospheric transmittances[J]. J Climate Appl Meteor, 1986, 25(6): 869-882.
    [27] LI J, WOLF W W, MENZEL W P, et al. Global soundings of the atmosphere from ATOVS measurements: The algorithm and validation[J]. J Appl Meteor, 2000, 39(8): 1 248-1 268.
    [28] CHEDIN A, SCOTT N A. Initialization of the radiative transfer equation inversion problem from a pattern recognition type approach. Application to the satellites of the TIROS-N se-ries[M]. Advances in remote sensing retrieval methods(eds. A. Deepak, HE Fleming and MT Chahine). Hampton/Virginia: Deepak Publishing, 1985: 495-515.
    [29] CHURNSIDE J H, STERMITZ T A, SCHROEDER J A. Temperature profiling with neural network inversion of microwave radiometer data[J]. J Atmos Ocean Tech, 1994, 11(1): 105-109.
    [30] MOTTELER H E, STROW L L, MCMILLIN L, et al. Comparison of neural networks and regression-based methods for temperature retrievals[J]. Applied Optics, 1995, 34(24): 5 390-5 397.
    [31] CHéDIN A, PéQUIGNOT E, SERRAR S, et al. Simultaneous determination of continental surface emissivity and temperature from NOAA 10/HIRS observations: Analysis of their seasonal variations[J]. J Geophy Res, 2004, 109(D20): D20110.
    [32] ROSENKRANZ P W. Retrieval of temperature and moisture profiles from AMSU-A and AMSU-B measurements[J]. IEEE Trans Geosci Remote Sens, 2001, 39(11): 2 429-2 435.
    [33] LIU Q, WENG F. One-dimensional variational retrieval algorithm of temperature, water vapor, and cloud water profiles from advanced microwave sounding unit (AMSU)[J]. IEEE Trans Geosci Remote sens, 2005, 43(5): 1 087-1 095.
    [34] AIRES F, PRIGENT C, ORLANDI E. Microwave hyper-spectral measurements for temperature and humidity atmospheric profiling from satellite: the clear-sky case[J]. J Geophy Res, 2015, 120(21): 11 334-11 351.
    [35] LI J, WOLF W W, MENZEL W P, et al. Global soundings of the atmosphere from ATOVS measurements: the algorithm and validation[J]. J Appl Meteor, 2000, 39(8):1248-1268.
    [36] 黄静, 邱崇践, 张艳武.一种利用卫星红外遥感资料反演晴空大气参数的物理统计方法[J].红外与毫米波学报, 2007, 26(2): 102-106.
    [37] 贺秋瑞. FY_3C卫星微波湿温探测仪反演大气温湿廓线研究[D].北京: 中国科学院国家空间科学中心, 2017.
    [38] 高大启.有教师的线性基本函数前向三层神经网络结构研究[J].计算机学报, 1998, 21(4) : 80-86.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  529
  • HTML全文浏览量:  22
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-02
  • 修回日期:  2018-12-18
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回