IMPACT OF PLANETARY BOUNDARY LAYER PARAMETERIZATIONS ON SIMULATED SEA BREEZE CIRCULATION OVER THE HAINAN ISLAND
-
摘要: 利用WRF V3.7详细分析了应用8种边界层参数化方案(YSU、MYNN2.5、MYNN3、ACM2、BouLac、UW、SH、GBM)所模拟的2014年5月25日海南岛海风环流结构的差异,其中YSU、ACM2和SH为非局地闭合方案,MYNN2.5、MYNN3、BouLac、UW和GBM为局地闭合方案。结果表明:对于海风环流水平结构的模拟,15时,YSU、ACM2、BouLac、UW和SH模拟的北部海风较强,SH和GBM的内陆风速偏大。温度与海风发展强度相对应,MYNN2.5与MYNN3模拟的岛屿温度偏低,海陆温差小,海风相对较弱。对于海风环流垂直结构的模拟,09时海风开始,但强度较小,且存在残余陆风,向内陆传播距离较短,YSU、MYNN2.5和SH方案的海风相对较强。12时,海风已呈现出较为清晰的环流结构,YSU和ACM2的海风厚度及向内陆传播距离相对强于其它方案,MYNN3的环流结构则不太明显,且向内陆推进距离短,海风相对较弱。15时,海风发展强盛,MYNN2.5和MYNN3方案模拟的海风垂直强度较小,ACM2方案的海风垂直环流特征最为明显。18时,海风的强度和扰动均有所减弱,ACM2、BouLac和UW的整体海风相对强于其它方案。21时海风已基本转为陆风,BouLac与UW的陆风环流结构最为清晰。位温、水汽及海风垂直环流强度的发展变化与海风的演变过程基本一致。造成ACM2模拟海风偏强的原因是其边界层垂直混合偏强,形成了足够的湍流混合强度所致。对于边界层高度的模拟,ACM2的边界层顶最高,这与此方案所模拟的海风强度偏大相吻合,其它方案的边界层高度与海风强度并不完全一致。Abstract: To study the impact of planetary boundary layer parameterizations (YSU, MYNN2.5, MYNN3, ACM2, BouLac, UW, SH, GBM) on the simulated sea breeze circulation, WRF V3.7 is used to simulate a typical case of sea breeze day on May 25, 2014 over the Hainan Island. YSU, ACM2 and SH are non-local closure schemes, and the MYNN2.5, MYNN3, BouLac, UW and GBM are local TKE schemes. The results are shown as follows: In the simulation of horizontal structure of sea breeze, the intensity of YSU, ACM2, BouLac, UW and SH in the north is strong and the inland wind speed of SH and GBM is relatively high at 15:00 LST. Meanwhile, the variations of temperature are consistent with the intensity of sea breeze, and MYNN2.5 and MYNN3 simulate low temperature. As a result, their land-sea thermal difference is less than that of the other 6 schemes, and the intensity of sea breeze is weak. In the simulation of vertical structure of sea breeze, at 09:00 LST, the sea breeze strength is small and there is remnant land breeze, the propagation distance of sea breeze is short, YSU, MYNN2.5 and SH simulate strong sea breeze. At 12:00 LST, the circulation structure of sea breeze is clear, YSU and ACM2 simulate thick sea breeze depth and long propagation distance, but the circulation structure of MYNN3 is not clear and the propagation distance is short, resulting in weak intensity of sea breeze. At 15:00 LST, sea breeze develops intensely, MYNN2.5 and MYNN3 simulate weak vertical strength of sea breeze, while ACM2 simulates the clearest sea breeze circulation structure of all. At 18:00 LST, the intensity of sea breeze and vertical disturbance are weaker than at 15:00 LST. ACM2, BouLac and UW simulate strong sea breeze. At 21:00 LST, sea breeze changes into land breeze and BouLac and UW simulate powerful circulation. The characteristics of potential temperature, water vapor, intensity of vertical circulation are consistent with sea breeze. ACM2 simulates strong sea breeze due to the fact that vertical mixing action is strong within the planetary boundary layer. With regard to the simulated planetary boundary layer height, ACM2 has the highest height, which is coincident with the intensity of sea breeze. Moreover, the heights of other schemes are not consistent with the sea breeze strength.
-
图 6 沿图 1b中AB线模拟的12:00 LST垂直风速(阴影,单位:m/s),南北环流(w扩大了20倍),v风速零线(黑色等值线)的垂直剖面
a. YSU;b. MYNN2.5;c. MYNN3;d. ACM2;e. BouLac;f. UW;g. SH;h. GBM。
图 7 同图 6,但为15:00 LST
图 8 同图 6,但为18:00 LST
表 1 模式主要物理参数化方案设置
物理过程 选用的参数化方案 短波辐射 Dudhia+地形辐射效应[45] 长波辐射 RRTM 微物理学 Lin et al 积云参数化(仅D1、D2) Kain-Fritsch 边界层 YSU、MYNN2.5、MYNN3、ACM2、BouLac、UW、SH、GBM 近地面层 MM5 Monin-Obukhov Similarity 陆面过程 Noah 表 2 海口站模拟的2 m温度和10 m风速的统计结果检验
方案 YSU MYNN2.5 MYNN3 ACM2 BouLac UW SH GBM WS MBE 0.67 0.61 0.42 0.86 0.85 1.03 0.67 0.70 RMSE 2.11 2.31 2.34 2.40 2.32 2.10 2.10 2.20 σdiff 1.99 2.23 2.30 2.23 2.16 1.83 1.98 2.08 IA 0.803 0.830 0.855 0.830 0.728 0.771 0.811 0.823 T2 MBE -0.34 -0.50 -0.48 -0.34 -0.12 -0.15 -0.34 0.08 RMSE 0.76 0.70 0.62 0.85 0.48 0.50 0.71 0.36 σdiff 0.68 0.48 0.39 0.77 0.46 0.48 0.62 0.35 IA 0.982 0.984 0.987 0.976 0.993 0.993 0.985 0.996 表 3 三亚站模拟的2 m温度和10 m风速的统计结果检验
方案 YSU MYNN2.5 MYNN3 ACM2 BouLac UW SH GBM WS MBE -1.75 -1.73 -1.66 -1.52 -1.66 -1.60 -1.80 -1.53 RMSE 2.15 2.11 2.10 1.94 1.90 2.01 2.13 2.12 σdiff 1.19 1.14 1.24 1.16 0.86 1.16 1.06 1.42 IA 0.596 0.588 0.604 0.591 0.475 0.563 0.564 0.669 T2 MBE 0.93 0.94 0.98 1.22 1.07 1.17 0.88 1.18 RMSE 1.13 1.13 1.16 1.37 1.18 1.32 1.07 1.36 σdiff 0.61 0.59 0.59 0.55 0.46 0.57 0.59 0.62 IA 0.883 0.881 0.864 0.845 0.884 0.853 0.889 0.837 -
[1] LIN W S, WANG A Y, WU C S, et al. A case modeling of sea-land breeze in Macao and its neighborhood[J]. Adv Atmos Sci, 2001, 18(6): 1 231-1 240. [2] MIAO J F, KROON L J M, ARELLANO V G D, et al. Impacts of topography and land degradation on the sea breeze over eastern Spain[J]. Meteorol Atmos Phys, 2003, 84(3-4): 157-170. [3] MIAO J F, WYSER K, CHEN D, et al. Impacts of boundary layer turbulence and land surface process parameterizations on simulated sea breeze characteristics[J]. Ann Geophys, 2009, 27(6): 2 303-2 320. [4] CROSMAN E T, HOREL J D. Sea and lake breezes: A review of numerical studies[J]. Boundary-Layer Meteorol, 2010, 137(1): 1-29. [5] 苗峻峰.城市热岛和海风环流相互作用的数值模拟研究进展[J].大气科学学报, 2014, 37(4): 521-528. [6] 苏涛, 苗峻峰, 韩芙蓉.海风雷暴的观测分析和数值模拟研究进展[J].气象科技, 2016, 44(1): 47-54. [7] 王凌梓, 苗峻峰.近10年中国地区地形对降水影响研究进展[J].气象科技, 2018, 46(1): 64-75. [8] 吴蒙, 罗云, 吴兑, 等.珠三角干季海陆风特征及其对空气质量影响的观测[J].中国环境科学, 2016, 36(11): 3 263-3 272. [9] 王子谦, 段安民, 吴国雄.边界层参数化方案及海气耦合对WRF模拟东亚夏季风的影响[J].中国科学:地球科学, 2014, 44(3): 548-566. [10] SHIN H H, DUDHIA J. Evaluation of PBL parameterizations in WRF at subkilometer grid spacings: Turbulence statistics in the dry convective boundary layer[J]. Mon Wea Rev, 2016, 144(1): 134-142. [11] 王咏薇, 蒋维楣, 刘红年.大气数值模式中城市效应参数化方案研究进展[J].地球科学进展, 2008, 23(4): 371-381. [12] MA H Y, SHAO H Y, SONG J. Modeling the relative roles of the foehn wind and urban expansion in the 2002 Beijing heat wave and possible mitigation by high reflective roofs[J]. Meteorol Atmos Phy, 2014, 123(3): 105-114. [13] MIAO J F, CHEN D, WYSER K, et al. Evaluation of MM5 mesoscale model at local scale for air quality applications over the Swedish west coast: Influence of PBL and LSM parameterizations[J]. Meteorol Atmos Phys, 2008, 99(1): 77-103. [14] SRINIVAS C V, VENKATESAN R, SINGH A B. Sensitivity of mesoscale simulations of land-sea breeze to boundary layer turbulence parameterization[J]. Atmos Environ, 2007, 41(12): 2 534-2 548. [15] MADALA S, SATYANARAYANA A N V, RAO T N. Performance evaluation of PBL and cumulus parameterization schemes of WRF ARW model in simulating severe thunderstorm events over Gadanki MST radar facility-case study[J]. Atmos Res, 2014, 139(6): 1-17. [16] 杨玉华, 刘长海, JIMY Dudhia, 等.基于大涡模拟对两类典型边界层参数化方案的评估分析[J].高原气象, 2016, 35(1): 172-180. [17] 杨悦, 高山红.黄海海雾WRF数值模拟中垂直分辨率的敏感性研究[J].气象学报, 2016, 74(6): 974-988. [18] HU X M, NIELSEN-GAMMON J W, ZHANG F. Evaluation of three planetary boundary layer schemes in the WRF model[J]. J Appl Meteorol Climatol, 2010, 49(9): 1 831-1 844. [19] XIE B, FUNG J C H, CHAN A, et al. Evaluation of nonlocal and local planetary boundary layer schemes in the WRF model[J]. J Geophys Res, 2012, 142(1): 163-182. [20] 徐慧燕, 朱业, 刘瑞, 等.长江下游地区不同边界层参数化方案的试验研究[J].大气科学, 2013, 37(1): 149-159. [21] HARIPRASAD K B R R, SRINIVAS C V, SINGH A B, et al. Numerical simulation and intercomparison of boundary layer structure with different PBL schemes in WRF using experimental observations at a tropical site[J]. Atmos Res, 2014, 145-146(1): 27-44. [22] 黄文彦, 沈新勇, 王卫国, 等.边界层参数化方案对边界层热力和动力结构特征影响的比较[J].地球物理学报, 2014, 57(5): 1 399-1 414. [23] KROGS TER O, REUDER J. Validation of boundary layer parameterization schemes in the Weather Research and Forecasting (WRF) model under the aspect of offshore wind energy applications-part Ⅰ: Average wind speed and wind shear[J]. Wind Energy, 2014, 18(5): 769-782. [24] KROGS TER O, REUDER J. Validation of boundary layer parameterization schemes in the Weather Research and Forecasting (WRF) model under the aspect of offshore wind energy applications-part Ⅱ: Boundary layer height and atmospheric stability[J]. Wind Energy, 2015, 18(7): 1 291-1 302. [25] 高笃鸣, 李跃清, 蒋兴文, 等. WRF模式多种边界层参数化方案对四川盆地不同量级降水影响的数值试验[J].大气科学, 2016, 40(2): 371-389. [26] DIMITROVA R, SILVER Z, ZSEDROVITS T, et al. Assessment of planetary boundary-layer schemes in the weather research and forecasting mesoscale model using materhorn field data[J]. Boundary-Layer Meteorology, 2016, 159(3): 589-609. [27] 陈杨瑞雪, 罗亚丽.不同边界层参数化方案和陆面过程参数化方案对一次梅雨锋暴雨显式对流模拟的影响分析[J].热带气象学报, 2016, 32(5): 656-667. [28] SALVADOR N, REIS N C, SANTOS J M, et al. Evaluation of weather research and forecasting model parameterizations under sea-breeze conditions in a North Sea coastal environment[J]. J Meteor Res, 2016, 30(6): 998-1 018. [29] DRAXL C, HAHMANN A N, PEÑA A, et al. Evaluating winds and vertical wind shear from weather research and forecasting model forecasts using seven planetary boundary layer schemes[J]. Wind Energy, 2014, 17(1): 39-55. [30] BANKS R F, TIANA-ALSINA J, BALDASANO J M, et al. Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign[J]. Atmos Res, 2016, 176-177: 185-201. [31] 温晓培, 隆霄, 张述文, 等.边界层参数化方案对台风SANBA初生阶段影响的数值模拟研究[J].热带气象学报, 2016, 32(3): 346-357. [32] 张振州, 蔡旭晖, 宋宇, 等.海南岛地区海陆风的统计分析和数值模拟研究[J].热带气象学报, 2014, 30(2): 270-280. [33] 王静, 苗峻峰, 冯文.海南岛海风演变特征的观测分析[J].气象科学, 2016, 36(2): 244-255. [34] 王语卉, 苗峻峰, 蔡亲波.海南岛海风三维结构的数值模拟[J].热带气象学报, 2016, 32(1): 109-124. [35] 张小培, 银燕.复杂地形地区WRF模式四种边界层参数化方案的评估[J].大气科学学报, 2013, 36(1): 68-76. [36] 杨秋彦, 苗峻峰, 王语卉.海南岛地形对局地海风环流结构影响的数值模拟[J].海洋学报, 2017, 39(3): 24-43. [37] HONG S Y, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Mon Wea Rev, 2006, 134(9): 2 318-2 341. [38] NAKANISHI M, NIINO H. An improved Mellor-Yamada Level-3 model: Its numerical stability and application to a regional prediction of advection fog[J]. Boundary-Layer Meteorol, 2006, 119(2): 397-407. [39] NAKANISHI M, NIINO H. Development of an improved turbulence closure model for the atmospheric boundary layer[J]. J Meteor Soc Japan, 2009, 87(5): 895-912. [40] PLEIM J E. A combined local and nonlocal closure model for the atmospheric boundary layer, part Ⅰ: Model description and testing[J]. J Appl Meteor Climatol, 2007, 46(9): 1 383-1 395. [41] BOUGEAULT P, LACARRèRE P. Parameterization of orography-induced turbulence in a mesobeta-scale model[J]. Mon Wea Rev, 1989, 117(8): 1 872-1 890. [42] BRETHERTON C S, PARK S S. A new moist turbulence parameterization in the community atmosphere model[J]. J Climate, 2009, 22(12): 3 422-3 448. [43] SHIN H H, HONG S Y. Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions[J]. Mon Wea Rev, 2015, 143(1): 250-271. [44] GRENIER H, BRETHERTON C S. A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers[J]. Mon Wea Rev, 2001, 129(3): 357-377. [45] 韩芙蓉, 苗峻峰, 王语卉.地形辐射效应参数化对海南岛海风环流结构和云水分布模拟的影响[J].热带气象学报, 2018, 34(1): 115-132. [46] HUANG H J, LIU H N, HUANG J, et al. Atmospheric boundary layer structure and turbulence during sea fog on the Southern China coast[J]. Mon Wea Rev, 2015, 143(5): 1 907-1 923. -