IMPACT OF DATA ASSIMILATION ON SHORT-TERM PRECIPITATION FORECAST AND TRACK FORECAST OF TYPHOON LANDING IN THE COASTAL AREA OF GUANGDONG IN 2017
-
摘要: 利用华南精细数值天气预报模式,设计了无同化资料(CTRL)、同化雷达反演水汽(EXP1)以及同化雷达反演水汽、地面和探空资料(EXP2)三个试验,对2017年登陆广东沿海的四个台风降水预报与路径预报进行模拟,以评估资料同化对登陆台风短期降水预报、路径预报的影响。分析结果如下:雷达反演水汽同化后对未来24小时降水预报技巧均有正的改善,对台风路径预报影响不大;在此基础上同化地面、探空资料后对台风路径预报有改进,对降水预报改进不明显(与EXP1比)。通过诊断分析台风“玛娃”,发现模式初值场水汽的增量配合对流上升区有利于短时间内成云致雨,从而提高短时降水预报;地面及探空资料同化有利于登陆台风的短时路径预报。Abstract: Based on the south China fine numerical weather prediction model, three different experiments are designed-one with assimilation of radar-retrieved water vapor(EXP1), the second with assimilation of radar-retrieved water vapor plus surface and sounding data(EXP2), and the third without assimilation (CTRL)-to assess the impact of data assimilation on the prediction of short-term precipitation and the track of typhoon landing in the coastal area of Guangdong in 2017. Results are as follows. After the assimilation of radar-retrieved water vapor, the skill of the precipitation prediction is improved, and the impact of assimilation on the typhoon track forecast is not significant. The skill of track forecast is improved with assimilation of radar-retrieved water vapor plus surface and sounding data, while the improvement of precipitation forecasts is not significant compared with EXP1. Through the diagnosis and analysis of the typhoon"Mawar", it is found that the couple of the increase of water vapor in the initial field and the updraft is conducive to the production of cloud and rain water in a short time, thus improving the short-term precipitation forecast; the assimilation of surface and sounding data is conducive to the improvement of the short-term track forecast of landing typhoon.
-
Key words:
- data assimilation /
- typhoon /
- track and precipitation forecast
-
图 3 同图 2,但为台风“天鸽”
图 4 同图 2,但为台风“帕卡”
图 5 同图 2,但为台风“玛娃”
图 10 台风北侧的u(a)、v(b)分量差(EXP2-CTRL)时间演变图
u、v分量计算范围为图 6d的黑色矩形框(单位:m/s)。
表 1 物理过程设置
物理参数化方案 参数设置 积云对流参数化方案 SAS 短波辐射方案 Dudhia 长波辐射方案 RRTMM 云微物理参数化方案 WSM6 边界层参数化方案 MRF 陆面过程参数化方案 SLAB 表 2 2017年登陆广东台风
台风名称 起报时间(预报时效均为24小时) 台风登陆时间、地点 苗柏” 6月12日12时 12日15时在深圳登陆 “天鸽” 8月23日00时 23日04时在广东珠海登陆 “帕卡” 8月27日00时 27日01时在广东台山登陆 “玛娃 9月3日00时 3日10时在广东汕尾登陆 表 3 模拟试验设计
试验 同化的资料 CTRL 无 EXP1 雷达反演水汽资料(qv) EXP2 雷达反演水汽资料+探空、地面(qv, h, u, v) -
[1] BONAVITA M, DAHOUI M, LOPEZ P, et al. On the initialization of Tropical Cyclones ECMWF[R]. Technical Memorandum, 2017 https://www.ecmwf.int/en/elibrary/17677-initialization-tropical-cyclones [2] YAMAGUCHI M, NAKAGAWA M, ISHIDA J, et al. WGNE Intercomparison of tropical cyclone forecasts by operational NWP Models: A Quarter-Century and Beyond[J]. Bull Amer Meteor Soc, doi: 10.1175/BAMS-D-16-0133.1,inpress. [3] MAGNUSSON L, BIDLOT J, BONAVITA M, et al. ECMWF activities for improvedhurricane forecasts[J]. Bull Amer Meteor Soc, doi: 10.1175/BAMS-D-18-0044.1,inpress. [4] LEE H S, NICOLAS G, HELEN B, et al. Variational assimilation of radar reflectivity data at the Met Office[R]. ERAD 2012 - The Seventh European Conference on Radar in Meteorology and Hydrology. http://meteo.fr/cic/meetings/2012/ERAD/extended_abs/NWP_ 123_ext_abs.pdf [5] CHANG W, CHUNG K, FILLION L, et al. Radar Data Assimilation in the Canadian High-Resolution Ensemble Kalman Filter System: Performance and Verification with Real Summer Cases[J]. Mon Wea Rev, 2014, 142(6): 2 118-2 138. [6] WHEATLEY D M, KNOPFMEIER K H, JONES T A, et al. Storm-Scale data assimilation and ensemble forecasting with the NSSL Experimental Warn-on-Forecast System. Part I: Radar Data Experiments[J]. Wea Forecasting, 2015, 30(6): 1 795-1 817. [7] 陈耀登, 陈海琴, 孙娟珍, 等.雷达观测对应模式变量非线性特征及对四维变分同化的影响[J].热带气象学报, 2018, 34(6): 721-732. [8] 刘寅, 何光鑫, 刘佳伟, 等.雷达资料的3DVAR和EnSRF直接同化方法对一次暴雨预报的影响分析[J].热带气象学报, 2014, 30(5): 894-904. [9] 马旭林, 陆续, 于月明, 等.数值天气预报中集合-变分混合资料同化及其研究进展[J].热带气象学报, 2014, 30(6): 1 188-1 195. [10] HUANG Y Y, XUE J S, WAN Q L, et al. Improvement of the surface pressure operator in GRAPES and its application in precipitation forecasting in South China[J]. Adv in Atmos Sci, 2013, 30(2): 354-366. [11] 万齐林, 薛纪善, 庄世宇.多普勒雷达风场信息变分同化的试验研究[J].气象学报, 2005, 63(2): 129-145. [12] 朱磊, 万齐林, 刘靓珂, 等.雷达径向风资料EnKF同化应用对Vicente(2012)登陆台风强度变化过程预报的影响试验研究[J].热带气象学报, 2017, 33(3): 345-356. [13] 张诚忠, 薛纪善, 张林等.基于雷达反射率反演降水率的一维+三维变分同化研究及试验[J].气象学报, 2012, 70(5): 1 128-1 136. [14] 陈子通, 黄燕燕, 万齐林, 等.快速更新循环同化预报系统的汛期试验与分析[J].热带气象学报, 2010, 26(1):49-54. [15] 薛纪善, 陈德辉.数值预报系统GRAPES的科学设计与应用[M].北京:科学出版社, 2008: 383. [16] CHAN P W, WU N G, ZHANG C Z, et al. The first complete dropsonde observation of a tropical cyclone over the South China Sea by the Hong Kong Observatory[J]. Weather, 2018, 73(7): 227-234.