CHARACTERISTICS OF MESOSCALE SYSTEM AND DYNAMIC FACTOR INDEX DURING DISASTROUS SHORT-TIME RAINSTORMS AT XI′AN
-
摘要: 基于同化多普勒雷达资料的WRF模式、地面加密观测、卫星云图和NCEP再分析资料等,分析总结2015年8月3日、2016年7月24日西安两次致灾短时暴雨过程环境条件、中尺度系统及动力因子指数特征。结果表明:关中处于稳定少动的西太平洋副热带高压西北边缘,上干下湿、午后低层大气超绝热状态,为短时暴雨提供了热力条件。西风槽与近地层切变线是暴雨直接影响系统。伴随冷锋过境,午后西北方向咸阳、铜川一带地面偏北风跃增是短时暴雨有利触发因子,强降水位于地面3 h正变压中心至东侧大梯度区附近。短时暴雨对流云团距离北部高空急流相对较远,无斜压叶状云系特征,降水对上升气流拖曳作用明显,云团TBB中心降至-65 ℃以下后,周边出现最大雨强。暴雨云团内部,霰粒子含量最大,冰粒子比其他粒子偏少一个量级以上,最强上升运动在霰粒子中心上方-30 ℃层附近、接近雪粒子中心;伴随整层雨水、霰和雪粒子含量5倍以上突增出现短时暴雨,雪粒子比雨水、霰粒子开始增多时段偏晚约1 h,其含量峰值与最大雨强同步。两次短时暴雨环境条件和中尺度特征差异明显。“0803”过程为切变线冷区暴雨,高空西风急流范围大、位置偏南,西太平洋副热带高压较弱,西风槽后偏北冷空气活跃,偏南水汽输送弱,关中地区中下层存在明显能量锋区和对称不稳定;云团内部冰相粒子明显偏多,雪粒子相对霰粒子占比偏高,冷空气入侵有利于冰相粒子快速生长;暴雨位于能量锋区和对流云团边缘、TBB最大梯度区附近。“0724”过程为切变线暖区暴雨,高空急流范围小、位置偏北,西太平洋副热带高压强盛,偏北冷空气弱,偏南水汽输送明显,关中地区中下层为位势不稳定;云团内部冰粒子偏少,雪粒子相对霰粒子占比低;暴雨位于对流云团内部、TBB中心附近。定义的垂直螺旋度指数VHI和散度垂直通量指数DVFI对暴雨落区预报具有较好的参考价值:大暴雨位于动力指数异常大值中心趋于集中且稳定少动的区域附近,动力指数小于200、中心分散且大值持续时间短的区域,降水不明显。Abstract: Characteristics of mesoscale system and dynamic factor index during disastrous short-time rainstorms that occurred at Xi'an on 3 August 2015 (The"0803"process) and 24 July 2016 (The"0724" process) are analyzed by using NCEP 1 °×1 ° reanalysis data, ground intensive observation data, satellite cloud data and WRF based on C-band radars data assimilation. Results show that Guanzhong is located in the stable northwest border of the Pacific Subtropical High. Westerly trough and shear line are the direct systems that influence. In the afternoon, upper dry and lower wet stratification with air at lower levels is hyper adiabatic, which provides favorable environment for convection and strong release of unstable energy. Accompanied by the passage of a cold front, jumping of northward wind at surface from northwest Xianyang and Tongchuan in the afternoon is the triggering to rainstorm. Rainstorm is near the 3-hour anallobaric center of the ground to the east side of the great gradient region. The disastrous short-time rainstorm clouds are located far from the northern upper Jet, and their north parts have no baroclinic and leaf-like forms. The rainfall drag effect is evident. TBB center decreases to -65℃ during the rainfall peak. Graupel is the most significant particle in the mesoscale convective cloud above middle levels. The strongest upward motion center is located near the -30℃ level and snow center, which is just above the graupel center. There exists five times increasing of different particle content in the mesoscale convective cloud when rainstorm begins. The rainfall intensity peak is consistent temporally with that of snow particle content. Environment conditions and mesoscale characteristics are obviously different between the two processes. The"0803" process is near the cold zone of shear line, which features a wide range of upper westerly jet currents, a southerly location, a weaker Western Pacific Subtropical High, an active northerly cold air behind the westerly trough and weaker southward water vapor transport. Meanwhile, there are obvious energy front and symmetric instability below the middle layers of Guanzhong. The strong precipitation is concentrated near the energy front. The ice water particles in the cloud cluster are obviously more, and the proportion of snow particles are higher than that of graupel particles. The rainstorm center lies near the maximum gradient region of TBB at the edge of the convective cloud. Cold air intrusion is a favorable condition for the rapid growth of cloud ice particles. The "0724" process is near the warm zone of shear line, which is accompanied with small range upper westerly jet currents, northerly location, stronger Western Pacific Subtropical High, weak northly cold air behind the westerly trough and stronger southward water vapor transport. Meanwhile, there is potential instability below the middle levels near Guanzhong. The ice water particles in the cloud cluster are fewer, and the ratio of snow particles to graupel particles is low. The rainstorm center is located near the TBB center which is inside the convective cloud. Vertical Helicity Index (VHI) and Divergence Vertical Flux Index (DVFI) have good reference value for the forecast of short-term rainstorms in Xi'an. The rainstorm is located near the area where the centers of anomalous large values of the dynamic index tend to be concentrated and stable. No heavy rain happened near regions with dynamic index less than 200, or with scattered centers and short duration.
-
图 13 同图 12,但为“0724”过程
-
[1] 毕宝贵, 刘月巍, 李泽椿.秦岭大巴山地形对陕南强降水的影响研究[J].高原气象, 2006, 25(3): 485-493. [2] 侯建忠, 王川, 鲁渊平, 等.台风活动与陕西极端暴雨的相关特征分析[J].热带气象学报, 2006, 22(2): 203-208. [3] 武麦凤, 王桂梅, 曹玲玲, 等.台风"洛克"远距离引发陕西暴雨过程的成因分析[J].高原气象, 2014, 33(5): 1 297-1 304. [4] 张雅斌, 马晓华, 冉令坤, 等.关中地区两次初夏区域性暴雨过程特征分析[J].高原气象, 2016, 35(3): 708-725. [5] 梁生俊, 马晓华.西北地区东部两次典型大暴雨个例对比分析[J].气象, 2012, 38(7): 804-813. [6] 慕建利, 李泽椿, 赵琳娜, 等. "07.08"陕西关中短历时强暴雨水汽条件分析[J].高原气象, 2012, 31(4): 1 042-1 052. [7] 张弘, 梁生俊, 侯建忠.西安市两次突发性暴雨成因分析[J].气象, 2006, 32(5): 80-86. [8] 刘勇, 薛春芳. "6.29"西安突发性特大短时暴雨过程分析[J].陕西气象, 2007(1): 1-4. [9] 朱磊, 万齐林, 刘靓珂, 等.雷达径向风资料EnKF同化应用对Vicente(2012)登陆台风强度变化过程预报的影响试验研究[J].热带气象学报, 2017, 33(3): 345-356. [10] 童文雪, 李刚, 孙娟珍.针对对流降水预报的BJ-RUC系统1小时更新循环方案研究[J].热带气象学报, 2018, 34(2): 177-187. [11] 王洪, 王东海, 万齐林.多普勒雷达资料同化在"7.21"北京特大暴雨个例中的应用[J].气象学报, 2015, 73(4): 679-696. [12] 薛谌彬, 陈娴, 吴俞, 等.雷达资料同化在局地强对流预报中的应用[J].大气科学, 2017, 41(4): 673-690. [13] 曹倩, 张述文, 曹帮军, 等.超强不稳定和弱切变环境下一次飑线过程的雷达资料同化与分析[J].热带气象学报, 2016, 32(5): 645-655. [14] 梅钦, 智协飞, 王佳. WRF模式不同云参数化方案的暴雨预报能力检验及集成试验[J].大气科学学报, 2018, 41(6): 731-742. [15] GAO S, CUI X, ZHOU Y, et al. A modeling study of moist and dynamic vorticity vectors associated with two-dimensional tropical convection[J]. J Geophy Res, 2005, 110:DI17104, doi:1029/2004JD005675. [16] 高守亭, 冉令坤, 李娜, 等.集合动力因子暴雨预报方法研究[J].暴雨灾害, 2013, 32(4): 289-302. [17] 赵宇, 崔晓鹏.对流涡度矢量和湿位涡矢量在暴雨诊断分析中的应用研究[J].气象学报, 2009, 67(4): 540-548. [18] 吴贤笃, 冉令坤, 李娜, 等.一次东风波暴雨的动力因子预报研究[J].高原气象, 2013, 32(5): 1 339-1 348. [19] 冉令坤, 齐彦斌, 郝寿昌. "7.21"暴雨过程动力因子分析和预报研究[J].大气科学, 2014, 38(1): 83-100. [20] 李琴, 杨帅, 崔晓鹏, 等.四川暴雨过程动力因子指示意义与预报意义研究[J].大气科学, 2016, 40(2): 341-356. [21] 李明, 高维英, 侯建忠, 等.一次西南涡东北移对川陕大暴雨影响的分析[J].高原气象, 2013, 32(1): 133-144. [22] 赵强, 王楠, 李萍云, 等.两次陕北暴雨过程热力动力机制诊断[J].应用气象学报, 2017, 28(3): 340-356. [23] 杜继稳.降雨型地质灾害预报预警-以黄土高原和秦巴山区为例[M].北京:科学出版社, 2010, 8-17. [24] 韩宁, 苗春生.近6年陕甘宁三省5-9月短时强降水统计特征[J].应用气象学报, 2012, 23(6): 691-700. [25] 闵锦忠, 王修莹, 沈菲菲, 等.多普勒雷达资料同化对江苏一次飑线过程的数值模拟[J].气象科学, 2015, 35(3): 248-257. [26] 盛春岩, 薛德强, 雷霆, 等.雷达资料同化与提高模式水平分辨率对短时预报影响的数值对比试验[J].气象学报, 2006, 64(13): 293-307, 405. [27] 姚秀萍, 孙建元, 马嘉理.江淮切变线研究的回顾与展望[J].高原气象, 2017, 36(4): 1 138-1 151. [28] 陈翔翔, 丁治英, 刘彩虹, 等. 2000-2009年5、6月华南暖区暴雨形成系统统计分析[J].热带气象学报, 2012, 28(5): 707-718. [29] 鞠永茂, 王汉杰, 钟中, 等.一次梅雨锋暴雨云物理特征的数值模拟研究[J].气象学报, 2008, 66(3): 381-395. [30] MILBRANDT J A, MORRISON H.Prediction of graupel density in a bulk microphysics scheme[J]. J Atmos Sci, 2012, 70:410-429. -