WIND GUST FORECAST AND EVALUATION FOR SPECIFIC LOCATIONS BASED ON HISTORICAL TROPICAL CYCLONE DATA
-
摘要: 热带气旋是沿海地区最具破坏力的自然灾害之一。研究近海热带气旋对深圳三个重点港湾码头站的定量阵风预报。在前人研究的基础上,除了考虑热带气旋强度、热带气旋相对于气象台站的距离、方位角等热带气旋特性因素外,进一步详细分析了热带气旋尺寸对热带气旋引发重点区域的定点阵风预报影响。研究使用2014年以前的港湾码头站在热带气旋影响期间的小时极大风观测记录与各热带气旋特性因素建立预报模型,用2015—2018年的14个近海热带气旋对港湾码头站的小时极大风影响来检验预报模型的实用性。结果发现在进一步考虑了热带气旋尺寸因素对热带气旋引发定点大风影响后,预报模型可以精准地预报重点区域的最大阵风值,其预报结果可为行业气象风险评估提供有价值的参考。Abstract: Tropical Cyclone (TC) is one of the most destructive natural disasters for the coastal area. This study explored quantitative forecast of wind gust induced by TCs at three important port terminal stations in Shenzhen. Based on the previous research work, this study also considered the effect of TC size on the wind gusts observed at the port terminal stations, besides the consideration of factors including TC intensity, TC distance to the station, and TC azimuth relative to the station. Historical TC data and corresponding wind gust observations at the port terminal stations before 2014 were used for model setup, and the 14 TCs which had a shortest distance less than 300 km to Shenzhen or went through the third quadrant with a distance less than 400 km were used for model evaluation. Results show that after the consideration of the TC size, the forecasting model can precisely forecast the maximum wind gust induced by TCs at designated port area. Such forecasts can provide valuable references for the industrial meteorological risk assessment.
-
Key words:
- tropical cyclone /
- wind gust /
- forecast for specific locations /
- TC size
-
图 3 同图 2,但是对于妈湾港
图 4 同图 2,但是对于蛇口码头
表 1 各气象台站2014年12月31日以前有阵风记录的距离700 km范围的总TC样本数据及最后用于空间阵风分布绘图的各不同强度、不同尺寸类别的TC样本数
地点 总样本 大SSTY 小SSTY 大TY 小TY 大STS 小STS 大TS 小TS 盐田港YICT 4 535 23 42 77 95 89 93 153 156 妈湾港MWP 4 847 24 41 72 93 88 95 156 152 蛇口码头SFT 4 975 32 41 93 94 114 97 187 169 表 2 14个进入300 km范围或进入第三象限大风区范围的TCs详细情况
TC 台站 时间/
月-日-时TC纬
度/ °NTC经
度/ °ETC
强度/
(m/s)TC
气压/
hPaTC
尺寸/
km尺寸
判断距离
/km方位
角/
°最大阵
风观测/
(m/s)最大阵
风预测/
(m/s)旧方法最
大阵风预
测/(m/s)“莲花”
1510YICT 7-9-18 22.9 114.7 20 985 小TS 56.58 49.49 16.1 12~15 12~18 MWP 7-9-20 22.8 114.3 18 987 小TS 55.73 52.44 15.4 12~15 12~18 SFT 7-9-19 22.8 114.5 18 987 小TS 70.32 59.49 16.3 12~15 12~18 “彩虹”
1522YICT 10-4-10 20.7 111.2 50 940 200 小SSTY 380.21 237.42 25.9 24~27 24~30 MWP 10-3-21 19.5 113.2 38 965 260 小TY 340.18 191.90 15.0 18~21 18~24 SFT 10-4-11 20.9 111.0 50 940 200 小SSTY 348.12 240.24 15.9 15~18 18~21 “妮妲”
1604YICT 8-2-06 22.6 114.0 33 975 260 小TY 28.94 276.67 28.8 30~33 30~33 MWP 8-2-04 22.5 114.5 40 965 300 大TY 64.82 89.39 22.5 24~27 24~30 SFT 8-2-09 22.9 113.5 28 985 260 大STS 62.78 318.14 27.3 24~27 21~27 “海马”
1622YICT 10-2-13 22.8 115.1 42 960 0 小TY 87.92 72.93 27.0 24~27 21~27 MWP 10-21-12 22.5 115.4 42 960 350 大TY 157.28 89.50 20.9 21~24 12~15 SFT 10-21-12 22.5 115.4 42 960 350 大TY 153.19 88.88 21.9 18~21 6~12 “苗柏”
1702YICT 6-12-23 22.5 114.5 23 990 60 小TS 23.90 108.97 24.6 15~21 15~18 MWP 6-13-01 22.7 114.5 23 990 0 小TS 68.67 70.49 16.7 15~21 15~18 SFT 6-12-23 22.5 114.5 23 990 60 小TS 60.76 87.79 15.2 9~15 9~12 “洛克”
1707YICT 7-23-11 22.6 114.1 18 998 0 小TS 18.78 280.27 19.4 18~21 18~21 MWP 7-23-11 22.6 114.1 18 998 0 小TS 26.44 63.75 10.8 9~15 18~21 SFT 7-23-11 22.6 114.1 18 998 0 小TS 23.72 55.74 10.1 9~15 15~18 “天鸽”
1713YICT 8-23-13 22 113.2 45 950 280 小SSTY 127.92 240.51 27.9 27~33 40.2±3.0 MWP 8-23-12 21.9 113.5 48 940 280 小SSTY 76.29 209.93 25.7 24~30 35.5±3.0 SFT 8-23-13 22 113.2 45 950 280 小SSTY 90.41 233.95 31.7 24~30 28.8±3.0 “帕卡”
1714YICT 8-27-08 21.7 113.6 33 978 250 小TY 119.43 216.03 29.7 30~33 30~36 MWP 8-27-08 21.7 113.6 33 978 250 小TY 92.64 197.46 22.4 21~27 27~30 SFT 8-27-10 22.2 112.8 25 985 0 小STS 118.23 254.94 21.5 15~21 15~18 “玛娃”
1716YICT 9-4-04 23.1 115.1 16 1000 0 TD 102.64 54.80 13.8 12~15 12~15 MWP 9-3-19 22.6 116.2 25 990 200 小STS 239.66 86.76 12.3 9~15 12~15 SFT 9-4-08 23.3 114.6 16 1 000 0 TD 115.43 37.69 12.4 9~12 12~15 “卡努”
1720YICT 10-15-13 20.4 113.7 42 955 350 大SSTY 248.64 194.07 28.1 24~30 21~27 MWP 10-15-09 20 114.5 40 960 350 大TY 285.02 166.62 16.9 15~21 15~18 SFT 10-15-12 20.3 113.9 42 955 380 大SSTY 242.40 180.22 10.2 12~18 12~15 “艾云尼”
1804YICT 6-8-03 22.3 112.0 20 992 0 小TS 236.24 263.14 22.0 15~21 18~24 MWP 6-8-09 22.9 112.2 18 996 0 小TS 177.03 285.06 15.1 12~18 12~15 SFT 6-8-09 22.9 112.2 18 996 0 小TS 181.43 285.24 10.8 9~15 12~15 “山竹”
1822YICT 9-16-12 21.2 114.4 48 945 400 大SSTY 152.83 175.33 44.7 42.84±3.0 42.84±3.0 MWP 9-16-14 21.5 113.5 48 950 400 大SSTY 116.99 199.05 31.3 35.5±3.0 35.5±3.0 SFT 9-16-15 21.6 113.3 48 955 400 大SSTY 116.25 212.79 31.2 30.72±3.0 30.72±3.0 “百里嘉”
1823YICT 9-12-19 20.9 113.6 23 992 120 小TS 198.53 200.85 13.5 12~15 15~21 MWP 9-12-21 20.8 113.3 23 992 120 小TS 197.43 197.43 13.2 9~12 15~18 SFT 9-12-14 20.9 114.5 23 992 120 小TS 185.99 160.72 9.8 9~12 12~15 “玉兔”
1826YICT 11-1-22 20.6 116.2 28 982 500 大STS 330.08 142.62 15.8 9~12 3~9 MWP 11-1-16 20.2 116.3 30 980 500 大STS 358.45 134.94 12.5 9~12 3~6 SFT 11-1-16 20.2 116.3 30 980 500 大STS 354.37 135.23 7.2 6~9 6~9 注:表中所列为各TCs对三个港湾码头站引发最大阵风时所对应的时间,TC纬度,TC经度,TC强度,TC气压,TC尺寸,TC尺寸类型,TC与相应台站的距离,TC相对台站的方位角,以及各台站观测到的最大阵风(m/s);最后第二列为根据图 2、图 3、图 4历史阵风空间分布图估算的三个港湾码头气象站的最大阵风值(m/s);最后第一列为根据Li等[9]方法估算的三个港湾码头气象站的最大阵风值(m/s)。 -
[1] 中国新闻网.广东年均登陆台风居全国之首[Z]. 2014. [2018-11-25].http://www.chinanews.com/gn/2014/08-21/6518641.shtml [2] 周丽亚, 秦正茂, 樊行, 等.试论海洋资源观的演进与城市发展—以深圳为例[J].城乡发展研究, 2015, 22(4):59-64. [3] 王延青, 李晴岚, 兰红平, 等.热带气旋影响下的深圳港湾码头最大阵风预报方法研究[J].气象科技进展, 2017, 7(1):128-133. [4] World Shipping Council[WSC], Top 50 world container ports[R]. 2018. http://www.worldshipping.org/about-the-industry/global-trade/top-50-world-container-ports. [accessed November 17, 2018] [5] 庄佩君, 张向阳, 吴新洪, 等.基于客户满意度的货主选港[J].中国航海, 2018, 41(3):129-134. [6] KIDDER S Q, KUSSELSON S J, KNAFF J A, et al. The tropical rainfall potential (TRaP) technique. Part Ⅰ: Description and examples[J]. Wea Forecasting, 2005, 20(4): 456-464. [7] WILLOUGHBY H E, RAPPAPORT E N, MARKS F D. Hurricane forecasting: The state of the art[J]. Nat Hazards Rev, 2007, 8(3): 45-49. [8] LI Q L, LAN H P, CHAN J C L, et al. An operational statistical scheme for tropical cyclone induced rainfall forecast[J]. J Trop Meteor, 2015, 21(2): 101-110. [9] LI Q L, XU P C, WANG X B, et al. An operational statistical scheme for tropical cyclone induced wind gust forecasts[J]. Wea Forecasting, 2016, 31(6): 1 817-1 832. [10] 麻素红, 陈德辉.国家气象中心区域台风模式预报性能分析[J].热带气象学报, 2018, 34(4): 451-459. [11] 黄燕燕, 薛纪善, 冯业荣, 等.采用预报涡旋的初始化方案对2015年台风"莲花"、"灿鸿"的试验研究[J].热带气象学报, 2018, 34(5): 598-609. [12] 刘湖南.集装箱码头防台工作的探索[J].中国港口, 2011: 56-58. [13] 张鼎, 黄维, 俞赟.大型集装箱船码头系泊及抗台风计算分析[J].船舶与海洋工程, 2014, 98(2):15-19. [14] LAM J S L, SU S. Disruption risks and mitigation strategies: An analysis of asian ports[J]. Maritime Policy & Management, 2015, 42(5): 415-435. [15] LAM J S L, LASSA J A. Risk assessment framework for exposure of cargo and ports to natural hazards and climate extremes[J]. Maritime Policy Manage, 2017, 44(1): 1-15. [16] 叶庚姣, 余晖, 方平治, 等.拖曳系数参数化方案对工程台风模拟风场的影响研究[J].热带气象学报, 2018, 34(2): 188-197. [17] CAO X H, LAM J S L. Simulation-based catastrophe-induced port loss estimation[J]. Reliability Engineering and System Safety, 2018, 175: 1-12. [18] POWELL M D, REINHOLD T A. Tropical cyclone destructive potential by integrated kinetic energy[J]. Bull Amer Meteor Soc, 2007, 88(4): 513-526. [19] KNAFF J A, LONGMORE S P, MOLENAR D A. An objective satellite-based tropical cyclone size climatology[J]. J Climate, 2014, 27(1): 455-476. [20] IRISH J L, RESIO D T, RATCLIFF J J. The influence of storm size on hurricane surge[J]. J Phys Ocean, 2008, 38(9): 2 003-2 013. [21] WU L G, TIAN W, LIU Q Y, et al. Implications of the observed relationship between tropical cyclone size and intensity over the western North Pacific[J]. J Climate, 28(24): 9 501-9 506. [22] FRANK W M. The structure and energetics of the tropical cyclone Ⅰ. Storm structure[J]. Mon Wea Rev, 1977, 105(9): 1 119-1 135. [23] 林良勋, 冯业荣, 黄忠, 等.广东省天气预报技术手册[M].北京:气象出版社, 2006:526. [24] ZHANG Q H, WEI Q, CHEN L S. Impact of landfalling tropical cyclones in mainland China[J]. Sci China Earth Sci, 2010, 53(10): 1 559-1 564. [25] CHEN L S. Research progress on the structure and intensity change for the landfalling tropical cyclones[J]. J Trop Meteor, 2012, 18(2): 113-118. [26] 陈联寿, 孟智勇.我国热带气旋研究十年进展[J].大气科学, 2001, 25(3): 420-432. [27] CHEN Y, YAU M K. Asymmetric structures in a simulated landfalling hurricane[J]. J Atmos Sci, 2003, 60(18): 2 294-2 312. [28] KIMBALL S K. Structure and evolution of rainfall in numerically simulated landfalling hurricanes[J]. Mon Wea Rev, 2008, 136(10): 3 822-3 847. [29] BOS W V D. Wind influence on container handling, equipment and stacking. Port Technology, Edition 29[R]. Port Technology International, London, United Kingdom, 2016: 89-95. [Available online at https://www.porttechnology.org/images/uploads/technical_papers/PT29-19.pdf.]" [30] 王海龙, 吴新桥, 黄增浩, 等.超强台风"威马逊"登陆期间近地层风速变化特征分析[J].热带气象学报, 2018, 34(3): 297-304. [31] MEEUS J. Astronomical Algorithms[M]. Willmann-Bell, Inc, 1999: 477. [32] CHAN K T F, CHAN J C L. Impacts of initial vortex size and planetary vorticity on tropical cyclone size[J]. Quart J Roy Meteor Soc, 2014, 140(684): 2 235-2 248, doi:10.1002/qj.2292. [33] CHAN K T F, CHAN J C L. Global climatology of tropical cyclone size as inferred from QuikSCAT data[J]. Int J Climatol, 2015, 35(15): 4 843-4 848. doi:10.1002/joc.4307. [34] KNAFF J A, SAMPSON C R. After a decade are Atlantic tropical cyclone gale force wind radii forecasts now skillful?[J] Wea Forecasting, 2015, 30(3): 702-709, doi:10.1175/WAF-D-14-00149.1 [35] WU L G, TIAN W, LIU Q Y, et al. Implications of the observed relationship between tropical cyclone size and intensity over the Western North Pacific[J]. J Climate, 2015, 28(24): 9 501-9 506, doi:10.1175/JCLI-D-15-0628.1. [36] 郑焘, 李晴岚, 王兴宝, 等.台风对深港局地风影响数值模拟及地形敏感性试验[J].气象, 2018, 44(3):351-361.