A NUMERICAL SIMULATION STUDY ON THE CONTRIBUTION OF POLLUTION TRANSPORT TO PM2.5 IN JIANGSU DURING WINTERTIME
-
摘要: 利用WRF-Chem模式对2016年12月中下旬的两次重污染过程进行模拟,定量研究外来污染输送对江苏省PM2.5的污染贡献。15—17日和22—23日两次过程都存在明显的上游污染输送特征:宿迁、扬州、无锡(自西北向东南)的PM2.5浓度先后出现峰值,峰值均出现在西北风场中,当风向转为偏北风时峰值逐渐减弱。第二次过程中地面风力更大,高空形势更有利于远距离输送,高值区范围强度明显强于第一次,重度污染层厚度达到900~1 500 m,且持续时间较长。第一次过程中江苏省内排放源贡献率为23%~79%(第二次为5%~32%),苏南仍以本地排放源污染为主,苏北外来输送贡献率超过50%。第二次过程中宿迁、扬州、无锡的PM2.5外来输送贡献分别为105.9 μg/m3、83.1 μg/m3、64.8 μg/m3(第一次为40.2 μg/m3、20.9 μg/m3、11.1 μg/m3),山东省和京津冀地区排放源是主要污染输送来源,二者贡献之和在44%~70%。两次过程中,外来输送贡献均是自北向南递减,山东省贡献率高于京津冀地区,而其余周边省份的贡献率相对较低;安徽省对江苏西部城市的贡献率较高。Abstract: In order to reveal the contribution of pollution transport to PM2.5 in Jiangsu, WRF-Chem model was used to simulate heavy pollution episodes during December 14—24, 2016. The results showed that Episode1(15—17) and Episode2(22—23) both had obvious features of upstream pollution transport: the PM2.5 concentration peak value appeared successively from northwest to southeast when surface was dominated by the northwest wind and decreased when wind direction changed to northerlies. The extension and intensity of high value in Episode2 was much higher than that in Episode1, during which the wind was stronger, the upper-level synoptic pattern was more favorable to long-distance transport, the severe pollution layer height reached 900~1 500 m, and the life-span was longer. The contribution ratio of emission resources in Jiangsu reached 23%~79% in Episode1 (and 5%~32% in Episode2). The ratio of transport was over 50% in northern Jiangsu while less than 50% in southern Jiangsu. In Episode2, the contribution of PM2.5 transport in Suqian, Yangzhou and Wuxi were 105.9 μg/m3, 83.1 μg/m3, and 64.8 μg/m3(40.2 μg/m3, 20.9 μg/m3, and 11.1 μg/m3, respectively in Episode1). Shandong and Beijing-Tianjin-Hebei region contributed 44%~70% together as far as pollution transport is concerned. In both Episodes, the contribution of PM2.5 transport decreased from north to south. Shandong played a more important role of pollution transportation than Beijing-Tianjin-Hebei region, and the other regions were relatively less important. Anhui had a high contribution rate on the western cites of Jiangsu.
-
Key words:
- haze /
- pollution transport /
- numerical simulation /
- WRF-Chem /
- emission resource
-
表 1 WRF-Chem参数化方案
参数化方案 所选方案名称 傲物理过程方案 Lin等方案 长波辐射方案 RRTM方案 短波辐射方案 Goddard短波方案 近地层方案 Monin-Obukhov方案 陆面过程方案 Noah陆面过程方案 边界层方案 YSU方案 枳云参数化方案 Grcll-3D方案 表 2 两次过程中各省排放源对江苏各市PM2.5贡献量 单位:μg/m3。
城市 江苏省
过程1/过程2京津冀
过程1/过程2山东省
过程1/过程2山西省
过程1/过程2河南省
过程1/过程2安徽省
过程1/过程2其他
过程1/过程2南京 57/18 17/18 12/29 4/7 4/5 19/14 9/31 无锡 85/38 10/11 9/30 1/5 1/2 1/4 5/28 徐州 34/20 15/25 26/41 1/4 8/3 24/3 5/24 常州 75/32 12/13 10/32 1/5 1/2 1/4 6/27 苏州 88/40 9810 8/30 1/5 1/2 1/4 4/29 南通 39/19 8823 12/28 1/4 1/1 1/1 7/21 连云港 15/4 15/22 29/29 1/2 1/1 1/1 5/24 淮安 51/22 15/27 24/26 2/4 2/1 1/1 6/21 盐城 29/14 12/23 14/32 1/3 1/1 1/1 6/25 扬州 31/13 14/19 11/33 2/5 2/2 4/4 7/21 镇江 52820 14818 11/32 1/6 2/2 3/4 8/24 泰州 43/18 12/23 12/30 1/4 1/1 1/1 6/22 宿迁 27/15 15/24 29/43 3/3 3/1 6/1 6/25 -
[1] 史军, 崔林丽, 贺千山, 等.华东雾和霾日数的变化特征及成因分析[J].地理学报, 2010, 65(5):533-542. [2] 田心如, 林惠娟, 陈广昌, 等. 1961-2012年江苏省霾日时空变化特征及影响因素分析[J].气象与环境学报, 2015, 31(3):29-34. [3] 崔健, 黄建平, 周晨虹, 等.江苏省能见度时空分布特征及其影响因子分析[J].热带气象学报, 2016, 31(5):700-712. [4] 朱先磊, 张远航, 曾立民, 等.北京市大气细颗粒物PM2.5的来源研究[J].环境科学研究, 2005, 18(5):1-5. [5] 吴兑, 邓雪娇, 毕雪岩, 等.细粒子污染形成灰霾天气导致广州地区能见度下降[J].热带气象学报, 2007, 23(1):1-6. [6] 陶俊, 张仁健, 董林, 等.夏季广州城区细颗粒物PM2.5和PM1.0中水溶性无机离子特征[J].环境科学, 2010, 31(7):1 417-1 424. [7] 周敏, 陈长虹, 乔利平, 等. 2013年1月中国中东部大气重污染期间上海颗粒物的污染特征[J].环境科学学报, 2013, 33(11):3 118-3 126. [8] POPE C A, DOCKERY D W. Acute health effects of PM10 pollution on symptomatic and asymptomatic children[J]. American Journal of Respiratory and Critical Care Medicine, 1992, 145(5):1 123-1 128. [9] 王春梅, 欧阳华, 王金达, 等.沈阳市环境铅污染对儿童健康的影响[J].环境科学, 2003, 24(5):17-22. [10] 白志鹏, 蔡斌彬, 董海燕, 等.灰霾的健康效应[J].环境污染与防治, 2006, 28(3):198-201. [11] CHEN H, WANG H. Haze days in North China and the associated atmospheric circulations based on daily visibility data from 1960 to 2012[J]. J Geophys Res, 2015, 120(12):5 895-5 909. [12] QU W, WANG J, ZHANG X, et al. Effect of cold wave on winter visibility over eastern China[J]. J Geophys Res, 2015, 120(6):2 394-2 406. [13] TSAI F, CHEN T J, LIU T H, et al. Characterizing the transport pathways of Asian dust[J]. J Geophys Res, 2008, 113:D17331. [14] 戴竹君, 刘端阳, 王宏斌, 等.江苏秋冬季重度霾的分型研究[J].气象学报, 2016, 74(1):133-148. [15] 陈一娜, 赵普生, 何迪, 等.北京地区大气消光特征及参数化研究[J].环境科学, 2015, 36(10):3 582-3 589. [16] 张蓬勃, 管兆勇, 邵鹏程, 等.江苏冬季霾日数的年代际变化与环流异常和区域增暖的可能联系[J].热带气象学报, 2015, 31(1):103-111. [17] 于兴娜, 马佳, 朱彬, 等.南京北郊秋冬季相对湿度及气溶胶理化特性对大气能见度的影响[J].环境科学, 2015, 36(6):1 919-1 925. [18] 薛文博, 付飞, 王金南, 等.中国PM2.5跨区域传输特征数值模拟研究[J].中国环境科学, 2014, 34(6):1 361-1 368. [19] 李锋, 朱彬, 安俊岭, 等. 2013年12月初长江三角洲及周边地区重霾污染的数值模拟[J].中国环境科学, 2015, 35(7):1 965-1 974. [20] 张小玲, 唐宜西, 熊亚军, 等.华北平原一次严重区域雾霾天气分析与数值预报试验[J].中国科学院大学学报, 2014, 31(3):337-344. [21] 肇庆市PM2.5重污染天气形势及冬季典型污染过程输送特征研究[J].热带气象学报, 2017, 33(5): 782-791. [22] ZHANG Q, STREETS D G, HE K B, et al. Major components of China's anthropogenic primary particulate emissions[J]. Environ Res Lett, 2007, 2(4):045027. [23] GRELL G A, PECKHAM S E, SCHMITZ R, et al. Fully coupled "online" Chemistry within the WRF model[J]. Atmos Environ, 2005, 39(37):6 957-6 975. [24] 王艳, 柴发合, 王永红, 等.长江三角洲地区大气污染物输送规律研究[J].环境科学, 2008, 29(5):1 430-1 435. [25] 葛跃, 王明新, 白雪, 等.苏锡常地区PM2.5污染特征及其潜在源区分析[J].环境科学学报, 2017, 37(3):803-813. [26] 钱俊龙, 刘端阳, 曹璐, 等.冷空气过程对江苏持续性霾的影响研究[J].环境科学学报, 2017, 38(1):52-61.