TEMPORAL VARIATIONS OF EXTREME HEAT DAYS IN GUIGANG OF GUANGXI AND RELATED CIRCULATION BACKGROUND
-
摘要: 极端高温事件是我国南方夏季频发的天气灾害,区域性明显,持续性高温事件的环流背景及其影响机理值得深入研究。基于台站观测资料和欧洲中期天气预报中心的再分析资料,对1961—2010年广西东南部贵港地区发生的高温事件的时间变化规律及持续性高温天气过程对应的大气环流场演变进行了统计诊断分析。(1)广西东南部贵港地区的高温日主要出现在6—9月,其中7—8月是高温日频发的月份;3天以上的持续高温日数占总高温日数的6成;8—9月的高温日数具有明显的增加趋势。(2)桂东南在6—9月的持续性高温天气与一些特定的天气系统的存在有紧密联系。持续的下沉运动是造成广西东南部升温的主要原因,而导致垂直下沉运动的主要原因又与大陆高压、副热带高压或南海-菲律宾海出现的热带低压系统的北移路径偏东有关,持续时间较长的高温过程还与热带气旋的活动时间较长和强度偏强有关。(3)高压控制的晴空少云天气可导致地表接收更多的太阳辐射,使得地表温度的升高,从而导致地表向上的长波辐射及感热通量增强,加热近地面空气,这些有利于近地面升温的热力过程以及垂直下沉绝热加热过程的增强,使得高温天气过程得以维持。Abstract: Extreme heat events are the frequent weather disasters in summer in southern China. The circulation background of persistent extreme heat events and its influence mechanism deserve further study. This study statistically analyzed the temporal variation of extreme heat events in Guigang in southeastern Guangxi in different months from 1961 to 2010, and examined the evolution of circulation in the weather process of extreme heat events with different duration, using the observed station data and ECMWF ERA-Interim Reanalysis data. Climatologically, extreme heat days in Guigang mainly appear from June to September, especially in July and August. 60% of the extreme heat days are contributed by persistent heat events with lifetime of three days or more. The extreme heat days in August and September have an increasing trend. The phenomena of extreme heat are closely associated with some special circulation systems. Continuous vertical sinking motion is a major forcing to lead to extreme heat in Guigang, and the causes giving rise to sinking motion are mainly continental high pressure systems or western Pacific subtropical highs, and the eastward northward-moving paths of tropical cyclones originating in the South China Sea or the Philippine Sea. The longer durations of the extreme heat events are also associated with the longer duration and stronger intensity of tropical cyclones. The sunny days associated with high pressure systems lead to the enhancement of downward solar radiation, which is conducive to a warmer surface, and then the intensification of upward long wave radiation and sensible heat flux, raising the near-surface temperature. The near-surface thermal processes and the adiabatic process associated with descending motion work together to cause long-lasting extreme heat events in Guigang.
-
Key words:
- extreme heat /
- temporal variation /
- circulation background /
- mechanism
-
图 1 1961—2009年平均高温天数(天/年)分布
黑点为广西贵港市。用于统计的温度资料由Xu等[36]提供。
图 9 同图 8,但为感热通量
正值表示向上的感热通量变化,单位:W/m2。
图 14 同图 13,但为感热通量日际变化
正值表示向上的感热通量变化,单位:W/m2。
-
[1] POUMADERE M, MAYS C, LE MER S, et al. The 2003 heat wave in France: dangerous climate change here and now[J]. Risk Analysis, 2005, 25(6): 1 483-1 494. [2] 梁梅, 吴立广.中国东部地区夏季极端高温的特征分析[J].气象科学, 2015, 35(6): 701-709. [3] 周长艳, 张顺谦, 齐冬梅, 等.近50年四川高温变化特征及其影响[J].高原气象, 2013, 32(6): 1 720-1 728. [4] IPCC. Climate Change 2013: The Physical Science Basis. Contribution of working group i to the fifth assessment report of the intergovern mental panel on climate change[M]. Cambridge: Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013: 1 535. [5] KARL T R, KUKLA G, RAZUVAYEV V N, et al. Global warming: Evidence for asymmetric diurnal temperature change[J]. Geophys Res Lett, 1991, 18(12): 2 253-2 256. [6] KARL T R, JONES P D, KNIGHT R W, et al. A new perspective on recent global warming: asymmetric trends of daily maximum and minimum temperature[J]. Bull Amer Meteor Soc, 1993, 74(6):1 007-1 023. [7] EASTERLING D R, HORTON B, JONES P D, et al. Maximum and minimum temperature trends for the globe[J]. Science, 1997, 277(5 324): 364-367. [8] ALEXANDER L V, ALLEN S K, BINDOFF N L, et al. Summary for policymakers. in: climate change 2013: the physical science basis. contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge:Cambridge University Press, 2013:3-29. [9] ZHAI P M, PAN X H. Trends in temperature extremes during 1951-1999 in China[J]. Geophys Res Lett, 2003, 30(17): 169-172. [10] GONG D Y, PAN Y Z, WANG J A. Changes in extreme daily mean temperatures in summer in eastern China during 1955-2000[J]. Theor Appl Climatol, 2004, 77(1-2): 25-37. [11] 卫捷, 孙建华.华北地区夏季高温闷热天气特征的分析[J].气候与环境研究, 2007, 12(3): 453-463. [12] WEI K, CHEN W. Climatology and trend of high temperature extremes across China in summer[J]. Atmos Ocean Sci Lett, 2009, 2(3): 153-158. [13] DING T, QIAN W H, YAN Z W. Changes in hot days and heat waves in China during 1961-2007[J]. Int J Climatol, 2010, 30(10):1 452-1 462. [14] HUANG D Q, QIAN Y F, ZHU J. Trends of temperature extremes in China and their relationship with global temperature anomalies[J]. Adv Atmos Sci, 2010, 27(4): 937-946. [15] WEI K, CHEN W. An abrupt increase in the summer high temperature extreme days across China in the mid-1990s[J]. Adv Atmos Sci, 2011, 28(5): 1 023-1 029. [16] 孙建奇, 王会军, 袁薇.我国极端高温事件的年代际变化及其与大气环流的联系[J].气候与环境研究, 2011, 16(2): 199-208. [17] DING T, QIAN W H. Geographical patterns and temporal variations of regional dry and wet heatwave events in China during 1960-2008[J]. Adv Atmos Sci, 2011, 28(2): 322-337. [18] WANG A, FU J. Changes in daily climate extremes of observed temperature and precipitation in China[J]. Atmos Ocean Sci Lett, 2013, 69(5): 312-319. [19] 董丹宏, 黄刚.中国最高、最低温度及日较差在海拔高度上变化的初步分析[J].大气科学, 2015, 39(5): 1 011-1 024. [20] FENG J, LIU Y, YAN Z. Analysis of surface air temperature warming rate of China in the last 50 years (1962-2011) using k-means clustering[J]. Theor Appl Climatol, 2015, 120(3-4): 785-796. [21] 张尚印, 宋艳玲, 张德宽, 等.华北主要城市夏季高温气候特征和评估方法[J].地理学报, 2004, 59(3): 383-390. [22] 张尚印, 张海东, 徐祥德, 等.我国东部三市夏季高温气候特征及原因分析[J].高原气象, 2005, 24(5): 829-835. [23] 张尚印, 王守荣, 张永山, 等.我国东部主要城市夏季高温气候特征及预测[J].热带气象学报, 2004, 20(6): 750-760. [24] 卫捷, 杨辉, 孙淑清.西太平洋副热带高压东西位置异常与华北夏季酷暑[J].气象学报, 2004, 62(3): 308-316. [25] 方宇凌, 简茂球. 2003年夏季华南持续高温天气过程及热力诊断[J].热带海洋学报, 2011, 30(3): 30-37. [26] 张宇, 李耀辉, 王劲松, 等.2013年7月我国南方异常持续高温成因分析[J].热带气象学报, 2014, 30(6): 1 172-1 180. [27] 谭红建, 蔡榕硕. 2000年以来福州地区夏季极端高温的新特征及成因探讨[J].大气科学, 2015, 39(6): 1 179-1 190. [28] 蒙伟光, 张艳霞, 李江南, 等.WRF/UCM在广州高温天气及城市热岛模拟研究中的应用[J].热带气象学报, 2010, 26(3): 273-282. [29] 杨续超, 陈锋, 祝炜平, 等.城市化对浙江省夏季极端高温事件的影响[J].热带气象学报, 2014, 30(4): 719-726. [30] 郑祚芳, 王迎春, 刘伟东, 等.地形及城市下垫面对北京夏季高温影响的数值研究[J].热带气象学报, 2006, 22(6): 672-676. [31] HARPAZ T, ZIV B, SAARONI H, et al. Extreme summer temperatures in the East Mediterranean-Dynamical analysis[J]. Int J Climatol, 2014, 34(3): 849-862. [32] TAKANE Y, KUSAKA H, KONDO H. Climatological study on mesoscale extreme high temperature events in the inland of the Tokyo metropolitan area, Japan, during the past 22 Years[J]. Int J Climatol, 2014, 34(15): 3 926-3 938. [33] LU R, CHEN R. A review of recent studies on extreme heat in China[J]. Atmos Ocean Sci Lett, 2016, 9(2): 114-121. [34] CHEN R, LU R. Large-scale circulation anomalies associated with "tropical night" weather in Beijing, China[J]. Int J Climatol, 2014, 34(6): 1 980-1 989. [35] CHEN R, LU R. Comparisons of the circulation anomalies associated with extreme heat in different regions of eastern China[J]. J Climate, 2015, 28(14): 5 830-5 844. [36] XU Y, GAO X, SHEN Y, et al. A daily temperature dataset over China and its application in validating a RCM simulation[J]. Adv Atmos Sci, 2009, 2(4): 763-772.