THE CLIMATOLOGICAL FEATURES AND PECULIARITIES OF PRECIPITATION OVER EASTERN CHINA
-
摘要: 基于1960—2017年观测数据分析了中国东部降水极端特性的地区差异、季节和气候学特征及变化格局,探讨了与全球变化和区域气候变率的关联性。结果表明,极端性降水的演化与降水均值或总量的气候型态、降水集中性和持续性密切关联,尤其雨带迁移和雨型演替是影响极端性降水地区差异与时空演变的根本因素。气候变化背景下,中国东部极端性降水强度和频次变化存在较好的协同一致性,近60年来在长江以南,强度加大的地区极端性降水亦趋于频发。同时,两者季节特征和地区差异明显。春季东北地区及华北北部极端性降水强度和频次均有明显增加。近60年来夏季极端性降水强度和频次的趋势变化在长江以南均以增加为主,以北以下降为主。秋季极端性降水强度和频次在华北地区亦呈增加趋势。冬季华南和江南地区极端性降水强度和频次趋势变化均以增加为主。华北地区及以北和内蒙古的西部冬季极端性降水强度增加显著,但频次变化不明显。而东北地区北部冬季极端性降水在强度减小的情形下,其频次仍趋显著增加。特别是中国降水主要集中在夏季,自1980年代以来中国东部夏季多雨带南移,雨型以北方型和中间型占优,转换为以长江型和华南型为主,多雨带的极端性降水群发性强,影响指数显著增加。此外,太平洋年代际振荡(PDO)暖位相及ENSO暖事件期间,长江以北夏季极端性降水的影响指数会显著降低。而东亚夏季风的减弱则有利于长江中下游等地区夏季极端性降水的频发和群发,极端性降水强度加大,其影响的危险性趋于增强。Abstract: The precipitation over eastern China tends to be extreme events. This peculiarity and its seasonal differences, climatic features and spatio-temporal patterns are mainly analyzed based on the observations during 1960 to 2017. Therewith, its relationship with global change, regional climatic and oceanic variability is discussed. The results show that the evolution of the precipitation extremes (PE) are closely related to the climatologic patterns of mean or total precipitation as well as peculiarities of concentration and persistence. The migration of the rain belt (RB) and the succession of rainy patterns (RP) are the essential factors influencing the formation of local differences and the spatio-temporal evolution of the PE. Under the background of climate change, the changes of PE intensity and frequency have good synergistic consistency. The PE in areas with high frequency also has high intensity especially in the south of Yangtze River. Otherwise, the local and seasonal differences of the PE intensity and frequency are obvious. The PE intensity and frequency increase obviously in northeast China and the northern north China in spring. The intensity and frequency of summer PE have been increasing in the south of the Yangtze River but decreasing in the northern areas for recent 60 years. In autumn, the PE intensity and frequency in northern China both increase slightly. And in winter they both increase in southern China and the Jiangnan area (the south of the lower reaches of the Yangtze River). Though the PE intensity increases significantly in northern China and the west of Inner Mongolia, the frequency does not change distinctively in winter. In the northern part of Northeast China, under the scenario of the intensity decreasing of winter PE, the long-term trend of the frequency still shows a significant increase. Particularly, the RB in summer has moved southward since the 1980s, and the RP is dominant from the northern and the middle patterns to the Yangtze River and the south China patterns. The PE in rainy belts highly clusters, and the PE impact increases significantly. In addition, the summer PE impaction in the north of the Yangtze River is more likely to decrease during the warm phase of Pacific decadal oscillation (PDO) and ENSO warm events. The weakening of East Asian summer monsoon is conducive to the frequent and cluster occurrence of summer PE in the middle and lower reaches of the Yangtze River, which tends to aggravate the disaster risk of the PE along with its intensity increase there.
-
Key words:
- extreme precipitation /
- rain belt migration /
- summer rainfall pattern /
- persistence /
- concentration /
- cluster /
- risk of disaster
-
表 1 极端性降水气候指数
指数名称定义 单位 气候基准期平均的日降水量 mm/day 平均持续湿期(日降水量>1 mm) day 平均持续干期(日降水量 < 1 mm) day 第90百分位的日降水量 mm/day 连续5日最大降水量 mm 超过第90百分位的降水量均值(强度) mm/day 极端降水发生次数(频次) time 极端降水量占总降水量的比值(影响指数) % -
[1] IPCC. Managing the risks of extreme events and disasters to advance climate change adaptation[M]. Cambridge, UK, and New York, NY, USA: Cambridge University Press, 2012: 1-1 535. [2] 秦大河.中国极端气候事件和灾害风险管理及适应国家评估报告[M].北京:科学出版社, 2015: 1-377. [3] 齐庆华.基于国家海洋治理和全球气候变化的我国海洋灾害防治[J].海洋开发与管理, 2019, 36(2): 17-23. [4] 黄荣辉, 李崇银, 王绍武, 等.我国旱涝重大气候灾害及其形成机理研究[M].北京:气象出版社, 2003: 1-483. [5] 钱维宏, 符娇兰, 张玮玮, 等.近40年中国平均气候与极值气候变化的概述[J].地球科学进展, 2007, 22(7): 673-684. [6] 齐庆华, 蔡榕硕, 张启龙.华南夏季极端降水时空变异及其与西北部太平洋海气异常关联性初探[J].高原气象, 2013, 32(1): 110-121. [7] 孔锋, 孙劭, 王品, 等.地球工程情景下中国七大区域未来强降水和极端强降水的变化特征对比分析(2010-2099年)[J].热带气象学报, 2019, 35(1): 1-13. [8] 夏阳, 龙园, 任倩, 等.云贵高原夏季不同等级极端日降水事件的气候特征[J].热带气象学报, 2018, 34(2): 239-249. [9] 金爱浩, 曾刚, 余晔, 等.南亚高压与西太平洋副热带高压经纬向位置配置对中国东部夏季降水的影响[J].热带气象学报, 2018, 34(6): 806-818. [10] 章毅之, 宋进波, 屠菊清, 等.多变量时滞回归模型在江南地区初夏降水低频分量延伸期预报中的应用[J].大气科学学报, 2017, 40(6): 833-840. [11] YAN Z, JONES P D, DAVIES T D, et al. Trends of extreme temperatures in Europe and China based on daily observations[J]. Climatic Change, 2002, 53(1-3): 355-392. [12] PETERSON T C. Climate change indices[J]. WMO Bulletin, 2005, 54(2): 83-86. [13] 陈迪, 闵锦忠.长江中下游夏季极端降水指数的变化特征[J].气象科学, 2017, 37(4): 497-504. [14] 巢清尘, 巢纪平.影响中国及关键经济区热带气旋降水的气候趋势及极端性特征[J].大气科学, 2014, 38(6): 1 029-1 040. [15] 杨柳, 赵俊虎, 封国林.中国东部季风区夏季四类雨型的水汽输送特征及差异[J].大气科学, 2018, 42 (1): 81-95. [16] 翟盘茂, 王萃萃, 李威.极端降水事件变化的观测研究[J].气候变化研究进展, 2007, 3(3): 144-148. [17] 施能, 杨永胜, 陈辉.我国东部夏季降水百年雨型的多时间尺度变化特征研究[J].气象科学, 2001, 21(3): 316-325. [18] 周宁芳, 马杰, 刘凑华. 2016年梅汛期降雨环流特征及ECMWF中期预报偏差分析[J].热带气象学报, 2018, 34(4): 499-506. [19] 李向红, 陆虹, 伍静, 等.孟加拉湾对流对广西秋季暴雨影响分析[J].热带气象学报, 2018, 34(4): 507-513. [20] 孔锋, 方建, 吕丽莉. 1961-2015年中国暴雨变化诊断及其与多种气候因子的关联性研究[J].热带气象学报, 2018, 34(1): 34-47. -