[1] |
ELSBERRY R L, LAMBERT T D B, BOOTHE M A. Accuracy of Atlantic and eastern North Pacific tropical cyclone intensity forecast guidance[J]. Wea Forecasting, 2007, 22(4): 747-762.
|
[2] |
ROGERS R P, REASOR, ZHANG J A. Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification[J]. Mon Wea Rev, 2015, 143(2): 536-562.
|
[3] |
KAPLAN J, DEMARIA M. Larger-scale characteristics of rapidly intensifying tropical cyclones in the north Atlantic basin[J]. Wea Forecasting, 2003, 18(6): 1 093-1 108.
|
[4] |
HOLLIDAY C R, THOMPSON A H. Climatological characteristics of the rapidly intensifying typhoons[J]. Mon Wea Rev, 1979, 107(8): 1 022-1 034.
|
[5] |
QIN N, ZHANG D L, LI Y. A statistical analysis of steady eyewall sizes associated with rapidly intensifying hurricanes[J]. Wea Forecasting, 2016, 31(3): 737-742.
|
[6] |
GRAY M W. Global view of the origin of tropical disturbances and storms[J]. Mon Wea Rev, 1968, 96(114): 669-700.
|
[7] |
MERRILL R T. Environmental influences on hurricane intensification[J]. J Atmos Sci, 1988, 45(11): 1 678-1 687.
|
[8] |
HENDRICKS E A, PENG M S, FU B, et al. Quantifying environmental control on tropical cyclone intensity change[J]. Mon Wea Rev, 2010, 138(8): 3 243-3 271.
|
[9] |
ROGERS R, REASOR P, LORSOLO S. Airborne Doppler observation of the inner-core structural differences between intensifying and stead-state tropical cyclones[J]. Mon Wea Rev, 2013, 141(9): 2 970-2 991.
|
[10] |
ROGERS R, COAUTHORS. Observations of the structure and evolution of Hurricane Edouard (2014) during Intensity change. Part Ⅱ: Kinematic structure and the distribution of deep convection[J]. Mon Wea Rev, 2016, 144(9): 3 355-3 376.
|
[11] |
LIU Y, ZHANG D L, YAU M K. A multiscale numerical study of hurricane Andrew (1992). Part Ⅱ: Kinematics and inner-core structures[J]. Mon Wea Rev, 1999, 127(11): 2 597-2 616.
|
[12] |
LEE W C, BELL M M. Rapid intensification, eyewall contraction, and breakdown of Hurricane Charley (2004) near landfall[J]. Geophys Res Lett, 2007, 34(2): L02802.
|
[13] |
CARRASCO C A, LANDSEA C. W, LIN Y L. The influence of tropical cyclone size on its intensification[J]. Wea Forecasting, 2014, 29(3): 582-590.
|
[14] |
TAO D, ZHANG F. Evolution of dynamic and thermodynamic structures before and during rapid intensification of tropical cyclones: sensitivity to vertical wind shear[J]. Mon Wea Rev, 2019, 147(4): 1 171-1 191.
|
[15] |
KIEU C Q. An investigation into the contraction of the hurricane radius of maximum wind[J]. Meteorol Atmos Phys, 2012, 115(1-2): 47-56.
|
[16] |
STERN D P, VIGH J L, NOLAN D S, et al. Revisiting the relationship between eyewall contraction and intensification[J]. J Atmos Sci, 2015, 72(4): 1 283-1 306.
|
[17] |
WANG H, WANG Y. A numerical study of Typhoon Megi (2010): PartⅠ: Rapid intensification[J]. Mon Wea Rev, 2014, 142(1): 29-48.
|
[18] |
CHEN X M, WANG Y Q, ZHAO K, et al. A numerical study on rapid intensification of Typhoon Vicente (2012) in the South China Sea. Part Ⅰ: Verification of simulation, storm-scale evolution, and environmental contribution[J]. Mon Wea Rev, 2017, 145(3): 877-898.
|
[19] |
GUIMOND S R, HEYMSFIELD G M, TURK F J. Multiscale observations of Hurricane Dennis (2005): The effects of hot towers on rapid intensification[J]. J Atmos Sci, 2010, 67(3): 633-654.
|
[20] |
CHEN H, ZHANG D L. On the rapid intensification of Hurricane Wilma (2005). Part Ⅱ: Convective bursts and the upper-level warm core [J]. J Atmos Sci, 2013, 70(1): 146-162.
|
[21] |
HAZELTON A T, HART R E, ROGERS R F. Analyzing simulated convective bursts in two Atlantic Hurricanes. Part Ⅱ: Intensity change due to Bursts[J]. Mon Wea Rev, 2017, 145(8): 3 095-3 117.
|
[22] |
ZHANG D L, CHEN H. Importance of the upper-level warm core in the rapid intensification of a tropical cyclone[J]. Geophys Res Lett, 2012, 39(2): L02806.
|
[23] |
RIOS-BERRIOS R, DAVIS C A, TORN R D. A hypothesis for the intensification of tropical cyclones under moderate vertical wind shear [J]. J Atmos Sci, 2018, 75(12): 4 149-4 173.
|
[24] |
HARNOS D S, NESBITT S W. Convective structure in rapidly intensifying tropical cyclones as depicted by passive microwave measurements[J]. Geophys Res Lett, 2011, 38(7): L07805.
|
[25] |
GUIMOND S R, HEYMSFIELD G M, REASOR P D, et al. The rapid Intensification of Hurricane Karl (2010): New remote sensing observations of convective bursts from the Global Hawk Platform[J]. J Atmos Sci, 2016, 73(9): 3 617-3 639.
|
[26] |
ROGERS R. Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification[J]. J Atmos Sci, 2010, 67(1): 44-70.
|
[27] |
MIYAMOTO Y, TAKEMI T. A transition mechanism for the axisymmetric spontaneous intensification of tropical cyclones[J]. J Atmos Sci, 2013, 70(1): 112-129.
|
[28] |
MIYAMOTO Y, TAKEMI T. A triggering mechanism for rapid intensification of tropical cyclones[J]. J Atmos Sci, 2015, 72(7): 2 666-2 681.
|
[29] |
CHANG C C, WU C C. On the processes leading to the rapid intensification of Typhoon Megi (2010)[J]. J Atmos Sci, 2017, 74(4): 1 169- 1 200.
|
[30] |
MOLINARI J, VOLLARO D. Rapid intensification of a sheared tropical storm[J]. Mon Wea Rev, 2010, 138(10): 3 869-3 885.
|
[31] |
MOLINARI J, DODGE P, VOLLARO D, et al. Mesoscale aspects of the downshear reformation of a tropical cyclone[J]. J Atmos Sci, 2006, 63(1): 341-354.
|
[32] |
REASOR P D, EASTIN M D, GAMACHE J F. Rapidly intensifying Hurricane Guillermo (1997). Part Ⅰ: Low-wavenumber structure and evolution[J]. Mon Wea Rev, 2009, 137(2): 603-631.
|
[33] |
GABRIEL S L, ZAWISLAK J, ZIPSER E J, et al. The role of observed environmental conditions and precipitation evolution in the rapid intensification of Hurricane Earl (2010)[J]. Mon Wea Rev, 2015, 143(6): 2 207-2 223.
|
[34] |
CHEN H, GOPALAKRISHNAN S G. A study on the asymmetric rapid intensification of Hurricane Earl (2010) using the HWRF system[J]. J Atmos Sci, 2015, 72(2): 531-550.
|
[35] |
LEIGHTON H, GOPALAKRISHNAN S G, ZHANG J A, et al. Azimuthal distribution of deep convection, environmental factors, and tropical cyclone rapid intensification: A perspective from HWRF ensemble forecasts of Hurricane Edouard (2014)[J]. J Atmos Sci, 2018, 75 (1): 275-295.
|
[36] |
FRANK W M, RITCHIE E A. Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes[J]. Mon Wea Rev, 2001, 129(9): 2 249-2 269.
|
[37] |
BRAUN S A, WU L G. A numerical study of Hurricane Erin (2001). Part Ⅱ: Shear and the organization of eyewall vertical motion[J]. Mon Wea Rev, 2007, 135(4): 1 179-1 194.
|
[38] |
MIYAMOTO Y, NOLAN D S. Structural changes preceding rapid intensification in tropical cyclones as shown in a large ensemble of idealized simulations[J]. J Atmos Sci, 2018, 75(2): 555-569.
|
[39] |
HONG S Y, LIM J O J. The WRF single-moment 6-class microphysics scheme (WSM6)[J]. J Korean Meteor Soc, 2006, 42(2): 129-151.
|
[40] |
DUDHIA J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. J Atmos Sci, 1989, 46(20): 3 077-3 107.
|
[41] |
MLAWER E J, TAUBMAN S J, BROWN P D, et al. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave[J]. J Geophys Res, 1997, 102 (D14): 16 663-16 682.
|
[42] |
KAIN J S, FRITCH J M. Convective parameterization for mesoscale models: The Kain-Fritch scheme. The representation of cumulus convection in numerical models[J]. Meteor Monogr Amer Meteor Soc, 1993, 24(1): 165-170.
|
[43] |
NOH Y, CHEON W G, HONG S Y, et al. Improvement of the K-Profile model for the planetary boundary layer based on large eddy simulation data[J]. Boundary-Layer Meteorology, 2003, 107(2): 401-427.
|
[44] |
CHEN H, ZHANG D L, CARTON J, et al. On the rapid intensification of Hurricane Wilma (2005). Part Ⅰ: Model prediction and structural changes[J]. Wea Forecasting, 2011, 26(6): 885-901.
|
[45] |
秦南南.热带气旋快速增强期间眼墙尺度变化机制的研究[D].南京: 南京信息工程大学, 2018.
|
[46] |
XU J, WANG Y. Sensitivity of tropical cyclone inner core size and intensity to the radial distribution of surface entropy flux[J]. J Atmos Sci, 2010, 67(6): 1 831-1 852.
|
[47] |
GUO X, TAN Z M. Tropical cyclone fullness: A new concept for interpreting storm intensity[J]. Geophys Res Lett, 2017, 44(9): 4 324- 4 331.
|
[48] |
BRAUN S A. A cloud-resolving simulation of Hurricane Bob (1991): Storm structure and eyewall buoyancy[J]. Mon Wea Rev, 2002, 130 (6): 1 573-1 592.
|
[49] |
WU L G, BRAUN S A, HALVERSON J, et al. A Numerical Study of Hurricane Erin (2001). Part Ⅰ: Model verification and storm evolution [J]. J Atmos Sci, 2006, 63(1): 65-86.
|
[50] |
NGUYEN L T, MOLINARI J, THOMAS D. Evaluation of tropical cyclone center identification methods in numerical models[J]. Mon Wea Rev, 2014, 142(11): 4 326-4 339.
|
[51] |
REASOR P D, MONTGOMERY M T. Three-dimensional alignment and corotation of weak, TC-like vortices via linear vortex Rossby waves[J]. J Atmos Sci, 2001, 58(16): 2 306-2 330.
|
[52] |
STERN D P, NOLAN D S. On the vertical decay of the maximum tangential winds in tropical cyclones[J]. J Atmos Sci, 2011, 68(9): 2 073- 2 094.
|
[53] |
周星阳, 吴立广, 刘青元.次千米至次百米高分辨率模拟的热带气旋眼墙低层极端上升运动特征分析[J].热带气象学报, 2019, 35(1): 113- 124.
|