THE INFLUENCE OF CUMULUS CONVECTIVE PARAMETERIZATION ON THE SIMULATION OF TROPICAL CYCLONE ACTIVITIES IN EAST ASIA
-
摘要: 基于CWRF高分辨率模式的模拟结果,探讨了8种积云对流参数化方案对1986—2015年间东亚近海热带气旋的路径、频数及强度模拟的影响。结果发现:采用Kain-Fritsch方案模拟的热带气旋活动的空间分布与JTWC统计结果最接近。KF方案模拟的热带气旋生成频数(强度)明显高(强)于其他积云对流参数化方案,而BMJ方案模拟的热带气旋生成频数(强度)明显低(弱)于其他积云对流参数化方案。进一步分析发现,采用优化集合积云参数化方案(ECP)模拟热带气旋频数、ACE指数以及PDI指数的年际变化趋势较好,而采用KF积云对流参数化方案对热带气旋空间分布、频数及强度的模拟总体最优。Abstract: Eight cumulus convection parameterization schemes in the high resolution model CWRF are used to simulated the track, frequency and intensity of the tropical cyclones (TC) occurred in the offshore area of East Asia during 1986 to 2015. It is found that the spatial distribution is well performed in numerical model by the Kain-Fritsch scheme compared with JTWC data. Frequency (Intensity) of the TC simulated by the KF scheme is obviously higher (stronger) than that by other schemes while the frequency (intensity) simulated by the BMJ scheme is obviously lower (weaker) than that by other schemes. Further analysis shows that the ECP scheme in the CWRF model performs better in the simulation of the tendency for variation in TCs'frequency, ACE indexes and PDI indexes. In all, the KF scheme in the CWRF model can better reproduce TCs'spatial distribution, frequency and intensity.
-
Key words:
- CWRF /
- cumulus convection parameterization scheme /
- model evaluation /
- tropical cyclone /
- track /
- intensity /
- frequency
-
表 1 研究中各参数化方案的选择
表 2 不同积云对流参数化方案模拟结果的各项评分比较
方案名称 TS FAR PO Control 0.439 0.083 0.542 KF 0.507 0.184 0.427 BMJ 0.234 0.159 0.755 Grell 0.368 0.176 0.600 Tiedtke 0.334 0.179 0.640 NSAS 0.336 0.080 0.654 Donner 0.367 0.130 0.612 Emanuel 0.372 0.124 0.607 表 3 不同积云对流参数化方案与JTWC观测结果的相关系数
方案名称 相关系数(频数) 相关系数(ACE指数) 相关系数(PDI指数) Control 0.349 0.709 0.713 KF 0.266 0.428 0.430 BMJ 0.291 0.633 0.654 Grell 0.407 0.612 0.607 Tiedtke 0.198 0.600 0.618 NSAS 0.299 0.693 0.670 Donner 0.257 0.586 0.562 Emanuel 0.247 0.702 0.716 -
[1] 李真真, 吴立广, 刘青元, 等.近20a影响我国台风活动变化趋势[J].气象科学, 2016, 36(6):752-759. [2] 王敏, 徐祥德, 李英.西北太平洋热带气旋路径异常偏折的分类特征[J].热带气象学报, 2019, 35(2):177-186. [3] 姜嘉俊, 雷小途.热带气旋的体积及与强度关系的研究[J].热带气象学报, 2019, 35(2):187-196. [4] 刘珍圆, 王咏青, 张秀年, 等.台风Chanchu(0601)变性过程中的强度变化及环境场分析[J].热带气象学报, 2019, 35(4):528-538. [5] 陈小宇, 吴立广, 吴玉琴.华东沿海地形对登陆热带气旋运动影响的理想数值研究[J].大气科学学报, 2018, 41(4):441-453. [6] ROBERTS M J, VIDALE P L, MIZIELINSKI M S, et al. Tropical cyclones in the UPSCALE ensemble of high-resolution global climate models[J]. J Climate, 2015, 28(2):574-596. [7] KANADA S, WADA A. Different climatological characteristics, inner-Core structures, and intensifi cation processes of simulated intense tropical cyclones between 20-km global and 5-km regional models[J]. J Climate, 2017, 30(5):1 583-1 603. [8] LU J Z, FENG T, LI J, et al. Impact of assimilating Himawari‐8‐Derived layered precipitable water with varying cumulus and microphysics parameterization schemes on the simulation of typhoon Hato[J]. J Geophys Res, 2019, 124(6):3 050-3 071. [9] LI F, SONG J, LI X. A preliminary evaluation of the necessity of using a cumulus parameterization scheme in high-resolution simulations of Typhoon Haiyan (2013)[J]. Nat Hazards, 2018, 92(2):647-671. [10] WEN X, LONG X, ZHANG S, et al. Numerical studies of planetary boundary layer parameterization schemes on super typhoon Sanba (2012) during its Initial Stage[J]. J Trop Meteor, 2018, 24(3):288-299. [11] SRINIVAS C V, BHASKAR R D V, YESUBABU V, et al. Tropical cyclone predictions over the bay of bengal using the high-resolution advanced research weather research and forecasting (ARW) model[J]. Quart J Roy Meteor Soc, 2013, 139(676):1 810-1 825. [12] 孙敏, 袁慧玲. WRF模式中微物理和积云对流参数化方案对台风"莫拉克"模拟敏感性分析[J].热带气象学报, 2014, 30(5):941-951. [13] 王晨稀.对流参数化影响热带气旋的模拟研究[J].高原气象, 2013, 32(2):468-480. [14] LIANG X Z, SUN C, ZHENG X, et al. CWRF performance at downscaling China climate characteristics[J]. Climate Dyn, 2019, 52(3-4): 2 159-2 184. [15] 曾明剑, 陆维松, 梁信忠, 等. CWRF模式对夏季降水的集合预报试验研究[J].高原气象, 2008, 27(6):1 218-1 228. [16] CHEN L, LIANG X Z, DEWITT D, et al. Simulation of seasonal US precipitation and temperature by the nested CWRF-ECHAM system [J]. Climate Dyn, 2016, 46(3/4):879-896. [17] 董晓云, 余锦华, 梁信忠, 等. CWRF模式在中国夏季极端降水模拟的误差订正[J].应用气象学报, 2019, 30(2):223-232. [18] TAO W K, SIMPSON J, BAKER D, et al. Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model [J]. Meteor Atmos Phys, 2003, 82(1-4):97-137. [19] CHOU M D, SUAREZ M J. A solar radiation parameterization for atmospheric studies[R]. NASA Tech Memo, 1999, 15: 1-42. [20] HOLTSLAG A A M, BOVILLE B A. Local versus nonlocal boundarylayer diffusion in a global climate model[J]. J Climate, 1993, 6:1 825- 1 842. [21] CHOI HI, LIANG X Z, KUMAR P. A conjunctive surface-subsurface flow representation for mesoscale land surface models[J]. J Hydrometeorol, 2013, 14(5):1 421-1 442. [22] QIAO F, LIANG X Z. Effects of cumulus parameterization closures on simulations of summer precipitation over the continental United States[J]. Climate Dyn, 2017, 49(1-2):225-247. [23] KAIN J S, FRITSCH J M. Convective parameterization for mesoscale models: The Kain Fritsch scheme[C]. Amer Meteor Soc, 1993, 46: 165-170. [24] BETTS A K. A new convective adjustment scheme. PartⅠ:observational and theoretical basis[J]. Quart J Roy Meteor Soc, 1986, 112(473): 677-691. [25] BETTS A K, MILLER M J. A new convective adjustment scheme. PartⅡ : Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets[J]. Quart J Roy Meteor Soc, 1986, 112(473):693-709. [26] GRELL G A, DEVENYI D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques[J]. Geophys Res Lett, 2002, 29(14):1 693. [27] TIEDTKE M. A comprehensive mass flux scheme for cumulus parameterization in large-scale models[J]. Mon Wea Rev, 1989, 117(8):1 179-1 180. [28] HAN J G, PAN H L. Revision of convection and vertical diffusion schemes in the NCEP global forecast system[J]. Mon Wea Rev, 26(4): 520-533. [29] DONNER L J. A cumulus parameterization including mass fluxes, convective vertical velocities, and, mesoscale effects:Thermodynamic and hydrological aspects in a general circulation model[J]. J Climate, 2001, 14(16):3 444-3 463. [30] BONY S, EMANUEL K A. A parameterization of the cloudiness associated with cumulus convection:Evaluation using TOGA COARE data [J]. J Atmos Sci, 2001, 58(21):3 158-3 183. [31] ZHAO M, HELD I M, LIN S J, et al. Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM[J]. J Climate, 2009, 22(24):6 653-6 678. [32] 中国气象局上海台风研究所.西北太平洋热带气旋气候图集:1981—2010[M].北京:科学出版社, 2017:13. [33] EMANUEL K. Increasing destructiveness of tropical cyclones over the past 30 years[J]. Nature, 2005, 436(7 051):686-688.