APPLICATION OF GOES-16 ATMOSPHERIC TEMPERATURE PRODUCT DATA ASSIMILATION IN A HURRICANE FORECAST
-
摘要: 为评价静止卫星大气温度廓线产品资料同化对飓风预报的影响,以2018年飓风“迈克尔”为例,选用GOES-16温度廓线产品,开展静止卫星资料同化及其对飓风预报影响的研究。首先,通过评估温度廓线产品精度,选取质量较好的高度层并以统计的各层均方根误差作为观测误差用于同化试验;然后,利用WRF-3DVar系统进行不同稀疏化及不同同化频次的循环同化敏感性试验;最后,利用WRF模式开展24 h数值预报。试验结果表明,在飓风“迈克尔”期间温度廓线在200~1 000 hPa之间的误差在2 K以内,将水平分辨率稀疏化为模式分辨率的6倍且循环同化频次为6 h时同化该资料对模式的初始场有最为合理的改进,从大尺度环境场上看使模式具备更合理的环流形势,能够有效提高对飓风的路径及强度的预报效果,更准确地模拟降水落区及美国佛罗里达州等降水关键区域的雨强。Abstract: In order to evaluate the impact of geostationary satellite atmospheric temperature profile product data assimilation on hurricane forecast, this paper studies the assimilation of GOES-16 temperature profile product data and its impact on hurricane forecast for Hurricane Michael in 2018. First, by evaluating the accuracy of the temperature profile product, we select the higher quality layer and use the statistical root mean square error as the observation error for the assimilation. Then, the sensitivity tests of cyclic assimilation with different sparsity and different time intervals are carried out by using WRF-3Dvar system. Finally, the WRF model is used to carry out 24h numerical forecasting. The experimental results show that the error of the temperature profile between 200hPa and 1000hPa is within 2K for Hurricane Michael. When the horizontal resolution is thinned to 6 times the mode resolution and the cyclic assimilation interval is 6h, the assimilation of the data has the most reasonable improvement in the initial field of the model. From the view of large-scale environmental field, the model has a more reasonable circulation situation, which can effectively improve the forecast of hurricanes'track and intensity. It can also more accurately simulate the precipitation area and precipitation in key areas such as Florida.
-
表 1 ABI主要特性
ABI波段序号 波段范围/μm 中心波长/μm 用途 LAP探测中是否使用 回归 物理 1 0.45~0.49 0.47 日间陆地沿岸水上气溶胶等 2 0.59~0.69 0.64 日间云雾、风等 3 0.846~0.885 0.865 日间水上气溶胶等 4 1.371~1.386 1.378 日间卷云等 5 1.58~1.64 1.61 日间云顶相态、粒子大小等 6 2.225~2.275 2.25 日间陆地/云属性、植被、雪等 7 3.80~4.00 3.90 地表和云、夜间雾等 8 5.77~6.6 6.19 高层大气水汽、风、降水等 √ √ 9 6.75~7.15 6.95 中层大气水汽、风、降水等 √ √ 10 7.24~7.44 7.34 中层大气水汽、风、降水等 √ √ 11 8.3-8.7 8.5 稳定云相的总含水量、SO2、降水等 √ 12 9.42-9.8 9.61 臭氧、湍流等 √ √ 13 10.1-10.6 10.35 地表和云等 √ √ 14 10.8-11.6 11.2 SST、云、降水等 √ √ 15 11.8-12.8 12.3 SST、总含水量等 √ √ 16 13.0-13.6 13.3 大气温度、云高和云量 √ √ 表 2 稀疏化试验方案
序号 试验名称 试验方法 1 Ctrl 不同化任何观测资料 2 3DVar-M1 同化GOES-16温度廓线资料,不做稀疏化处理,水平分辨率10 km 3 3DVar-M2 同3DVar-M1,水平分辨率20 km 4 3DVar-M3 同3DVar-M1,水平分辨率30 km 5 3DVar-M4 同3DVar-M1,水平分辨率40 km 6 3DVar-M5 同3DVar-M1,水平分辨率50 km 7 3DVar-M6 同3DVar-M1,水平分辨率60 km 8 3DVar-M7 同3DVar-M1,水平分辨率70 km 9 3DVar-M8 同3DVar-M1,水平分辨率80 km 10 3DVar-M9 同3DVar-M1,水平分辨率90 km 表 3 循环同化试验方案
序号 试验名称 试验方法 1 Ctrl 不同化任何观测资料 2 3DVar-1 同化GOES-16温度廓线资料,循环同化时间为10月9日06时—9日18时,循环间隔为1 h 3 3DVar-6 同3Dvar-1,循环间隔为6 h 4 3DVar-12 同3Dvar-1,循环间隔为12 h -
[1] MCNALLY A P, DERBER J C, WU W, et al. The use of TOVS level-1b radiances in the NCEP SSI analysis system[J]. Quart J Royal Meteor Soc, 2010, 126(563): 689-724. [2] ZAPOTOCNY T H, JUNG J A, MARSHALL J F L, et al. A two-Season impact study of four satellite data types and rawinsonde data in the NCEP global data assimilation system[J]. Weather Forecasting, 2008, 23(1): 80-100. [3] XU D, LIU Z, HUANG X Y, et al. Impact of assimilating IASI radiance observations on forecasts of two tropical cyclones[J]. Meteorology Atmospheric Physics, 2013, 122(1-2): 1-18. [4] 隋新秀, 王振会, 鲍艳松, 等. FY-2E晴空风矢同化对台风分析和预报的影响研究[J].热带气象学报, 2018, 34(6): 819-831. [5] 郭姿佑, 秦正坤, 杜家铭, 等.气团订正对静止卫星成像仪资料同化在台风预报中的改进效果研究[J].热带气象学报, 2019, 35(4):539- 555. [6] LIU Z, SCHWARTZ C S, SNYDER C, et al. Impact of assimilating AMSU-A radiances on forecasts of 2008 Atlantic tropical cyclones initialized with a limited-area ensemble Kalman filter[J]. Mont Wea Rev, 2012, 140(140): 4 017-4 034. [7] XU D, MIN J, SHEN F, et al. Assimilation of MWHS radiance data from the FY‐3B satellite with the WRF Hybrid‐3DVAR system for the forecasting of binary typhoons[J]. Journal of Advances in Modeling Earth Systems, 2016, 8(2): 1 014-1 028. [8] HONDA T, MIYOSHI T, LIEN G Y, et al. Assimilating all-sky Himawari-8 satellite infrared radiances: A case of typhoon Soudelor (2015) [J]. Mon Wea Rev, 2018, 146(1): 213-229. [9] ZHU T, BOUKABARA S A, GARRETT K. Comparing impacts of satellite data assimilation and lateral boundary conditions on regional model forecasting: A case study of hurricane Sandy (2012)[J]. Weather and Forecasting, 2017, 32(2): 595-608. [10] LI J, HUANG H L. Retrieval of atmospheric profiles from satellite sounder measurements by use of the discrepancy principle[J]. Applied Optics, 1999, 38(6): 916-923. [11] LI J, WOLF W W, MENZEL W P, et al. Global soundings of the atmosphere from ATOVS measurements: The algorithm and validation [J]. J Applied Meteor, 2000, 39(8): 1 248-1 268. [12] WEISZ E, LI J, LI J, et al. Cloudy sounding and cloud-top height retrieval from AIRS alone single field-of-view radiance measurements[J]. Geophy Res Lett, 2007, 34(12): L12802. [13] ZHOU D K, SMITH W L, LIU X, et al. Physically retrieving cloud and thermodynamic parameters from ultraspectral IR measurements[J]. J Atmos Sci, 2007, 64(3): 969-982. [14] LI J, LIU H. Improved hurricane track and intensity forecast using single field-of-view advanced IR sounding measurements[J]. Geophy Res Lett, 2009, 36(11): L11813. [15] LIU H, LI J. An improvement in forecasting rapid intensification of typhoon Sinlaku (2008) using clear-sky full spatial resolution advanced IR soundings[J]. Journal of Applied Meteorology and Climatology, 2010, 49(4): 821-827. [16] 张蕾, 蒲朝霞. AIRS反演的温湿廓线资料对热带气旋数值模拟的影响[C]//第八届长三角气象科技发展论坛论文集. 2011. [17] 郑婧, 李俊, 李金龙.高光谱红外反演温湿度廓线在飓风预报中的同化应用研究[C]//第六届海峡论坛2014年两岸民生气象论坛文集. 2014. [18] SCHMIT T J, GUNSHOR M M, MENZEL W P, et al. Introducing the next-generation Advanced Baseline Imager on GOES-R[J]. Bull Amer Meteor Soc, 2005, 86(8): 1079-10960. [19] 董超华, 李俊, 张鹏.卫星高光谱红外大气遥感原理和应用[M].北京:科学出版社, 2013. [20] KWON E H, LI J, LI J, et al. Use of total precipitable water classification of a priori error and quality control in atmospheric temperature and water vapor sounding retrieval[J]. Adv Atmos Sci, 2012, 29(2): 263-273. [21] XU D M, LIU Z Q, HUANG X Y, et al. Impact of assimilating IASI radiance observations on two tropical cyclones[J]. Meteorology and Atmospheric Physics, 2013, 122(1-2): 1-18. [22] CHOI Y, CHA D H, LEE M I, et al. Satellite radiance data assimilation for binary tropical cyclone cases over the western North Pacific[J]. Journal of Advances in Modeling Earth Systems, 2017: 832-853. [23] 钱玲, 沈菲菲, 许冬梅, 等. AMSR2微波成像资料同化对飓风"桑迪"预报的影响研究[J].海洋预报, 2019(3): 9-17. [24] 束艾青, 许冬梅, 沈菲菲, 等.不同控制变量的AMSR2资料同化方法对台风"山神"预报的影响研究[J].海洋预报, 2019, 36(5): 19-29. [25] 钱芝颖, 鲍艳松, 沈菲菲, 等. AMSU-A微波资料变分同化对双台风预报的影响研究[J].海洋预报, 2019, 36(6): 9-21. [26] 张涛, 姜立鹏, 师春香, 等. AMSU-A全空辐射率资料同化对台风"六鸽"的预报影响研究[J].大气科学学报, 2019, 42(5):705-714. [27] 杨引明, 杜明斌, 张洁. FY-3A微波资料在"莫拉克"台风预报中的同化试验[J].热带气象学报, 2012, 28(1):23-30. [28] 张晓辉, 王云峰, 韩月琪, 等.基于AMSU-A的连续循环同化在台风"海葵"模拟中的应用研究[C]//中国气象学会年会. 2013.