APPLICATION OF WRF-HYDRO FOR RUNOFF SIMULATION BASED ON DIFFERENT RAINFALL PRODUCTS: TAKING ZHANGHE RIVER BASIN AS AN EXAMPLE
-
摘要: 以漳河流域为研究区域,以CMORPH卫星-地面自动站-雷达三源降水融合数据和ERA5再分析降水资料为WRF-Hydro模式的输入,进行径流模拟,对比分析模拟径流与实测径流的差异,探讨基于两种降水数据的WRF-Hydro模式在漳河流域的径流模拟效果。结果表明:三源降水融合数据的径流模拟效果较优,纳什系数均达到0.7以上,模拟径流与实测径流过程吻合较好;采用三源降水融合数据和ERA5再分析降水资料率定WRF-Hydro模式,以ERA5再分析降水资料为输入,径流模拟结果都不佳;总体而言,三源降水融合数据与WRF-Hydro模式耦合能够较好地模拟漳河流域径流过程。
-
关键词:
- WRF-Hydro模式 /
- CMORPH卫星-地面自动站-雷达三源降水融合数据 /
- ERA5再分析资料 /
- 径流模拟
Abstract: Taking Zhanghe River Basin as the study area, the present study used the high-resolution radar-satellite-gauge merged precipitation products and reanalysis precipitation data from ERA5 as input for the WRF-Hydro model for runoff simulation. To explore the accuracy of runoff simulation in Zhanghe River Basin based on the WRF-Hydro model of two precipitation data, we compared and analyzed the difference between simulated runoff and observation runoff. The results show that the three-source merged precipitation products perform better with the Nash efficiency coefficient above 0.7, and the simulated hydrological process curves agree well with the observed hydrological process curves. With the three-source merged precipitation products and the ERA5 reanalysis data calibrated to the WRF-Hydro model, the simulation results are not satisfying with the ERA5 reanalysis data as input. In general, the three-source merged precipitation products combined with the WRF-Hydro model can better simulate the runoff process in the Zhanghe River Basin. -
表 1 WRF-Hydro模式关键敏感性参数
类别 参数 中文名称 英文名称 默认数值 径流量影响参数 REFKDT 下渗率 infiltration factor 3.0 RETDEPRT 地表持水深 surface retention depth 1.0 SLOPE 控制深层排水的系数 coefficient governing deep drainage 系列数 MannN 曼宁糙率 channel Manning roughness 系列数 水文过程影响参数 OVROUGHRT 地表糙率 surface roughness 1.0 LKSATFAC 饱和土壤侧向导水率 saturated soil lateral conductivity 系列数 REFDK 饱和导水率 saturated hydraulic conductivity 2.0×10-6 表 2 两种情景下WRF-Hydro模型参数率定结果
情景 REFKDT MannN RETDEPRTFAC OVROUGHRTFAC 情景1 0.53 0.30 1.0 1.0 情景2 0.80 0.25 1.0 1.0 表 3 两种情景下径流模拟结果的各评价指标值
情景 降水数据 洪水场次 ER/% REp/% ΔT/h R NSE 情景1 三源降水融合产品 201606 -33.10 -5.61 0 0.91 0.72 201607 -52.99 -82.06 3 0.68 0.12 ERA5 201606 33.19 130.61 3 0.62 -2.65 201607 0.68 -31.74 27 0.28 -0.12 情景2 ERA5 201606 -28.03 67.58 3 0.56 -0.99 201607 -6.04 -16.54 24 0.31 -0.35 -
[1] 杨星星, 杨云川, 邓思敏, 等.广西TRMM降雨产品多时间尺度精度评估[J].热带气象学报, 2019, 35(4): 567-576. [2] 高玉芳, 陈耀登, 彭涛.雷达估测降雨水平分辨率对径流模拟的影响——以西苕溪流域为例[J].热带气象学报, 2018, 34(3): 347-352. [3] 唐国强, 李哲, 薛显武, 等.赣江流域TRMM遥感降水对地面站点观测的可替代性[J].水科学进展, 2015, 26(3): 340-346. [4] SUN Q H, MIAO C Y, DUAN Q Y, et al. A review of global precipitation data sets: Data sources, Estimation, and Intercomparisons[J]. Reviews of Geophysics, 2018, 56(1): 79-107. [5] 潘旸, 沈艳, 宇婧婧, 等.基于贝叶斯融合方法的高分辨率地面-卫星-雷达三源降水融合试验[J].气象学报, 2015, 73(1): 177-186. [6] 孟宪贵, 郭俊建, 韩永清. ERA5再分析数据适用性初步评估[J].海洋气象学报, 2018, 38(1): 91-99. [7] GOCHIS D J, BARLAGE M, DUGGER A, et al. The WRF-Hydro modeling system technical description, (Version 5.0)[R]. NCAR Technical Note, 2018. [8] SENATORE A, MENDICINO G, GOCHIS D J, et al. Fully coupled atmosphere-hydrology simulations for the central Mediterranean: Impact of enhanced hydrological parameterization for short and long time scales[J]. Journal of Advances in Modeling Earth Systems, 2015, 7(4): 1 693-1 715. [9] LI L, GOCHIS D J, SOBOLOWKSI S, et al. Evaluating the present annual water budget of a Himalayan headwater river basin using a highresolution atmosphere-hydrology model[J]. J Geophy Res: Atmos, 2017, 122(9): 4 786-4 807. [10] AMIR G, GOCHIS D J, THOMAS R, et al. Comparing one-way and two-way coupled hydrometeorological forecasting systems for flood forecasting in the mediterranean region[J]. Hydrology, 2016, 3(19): 1-21. [11] ZHOU J, ZHANG H, ZHANG J, et al. WRF model for precipitation simulation and its application in real-time flood forecasting in the Jinshajiang River Basin, China[J]. Meteorology & Atmospheric Physics, 2018, 130(6): 635-647. [12] JOËL A, THOMAS R, FLORIAN B, et al. Precipitation sensitivity to the uncertainty of terrestrial water flow in WRF-Hydro: An ensemble analysis for Central Europe[J]. Journal of Hydrometeorology, 2018, 19(6): 1 007-1 025. [13] 殷志远, 王志斌, 李俊, 等. WRF模式与Topmodel模型在洪水预报中的耦合预报试验研究[J].气象学报, 2017, 75(4): 672-684. [14] 方崇惠.漳河水库洪水分期与调度研究[D].武汉: 武汉大学, 2004. [15] KERANDI N, ARNAULT J, LAUX P, et al. Joint atmospheric-terrestrial water balances for East Africa: a WRF-Hydro case study for the upper Tana River basin[J]. Theoretical and Applied Climatology, 2017, 131: 1337-1355. [16] SILVER M, KARNIELI A, GINAT H, et al. An innovative method for determining hydrological calibration parameters for the WRF-Hydro model in arid regions[J]. Environmental Modelling & Software, 2017, 91: 47-69. [17] YANG Z L, CAI X T, ZHANG G, et al. The community Noah Land Surface Model with Multi-Parameterization Options (Noah-MP): technical description[R]. Center for Integrated Earth System Science, Department of Geological Sciences, The University of Texas at Austin, 2011. [18] NIU G Y, YANG Z L, MITCHELL K E., et al. The community Noah land surface model with multiparameterization options (Noah‐MP): 1. Model description and evaluation with local-scale measurements[J]. J Geophysical Research: Atmos, 2011, 116: D12109. [19] RYU Y, LIM Y J, JI H S, et al. Applying a coupled hydrometeorological simulation system to flash flood forecasting over the Korean Peninsula[J]. Asia-Pacific Journal of Atmospheric Sciences, 2017, 53(4): 421-430. [20] 王兆礼, 钟睿达, 赖成光, 等. TRMM卫星降水反演数据在珠江流域的适用性研究——以东江和北江为例[J].水科学进展, 2017, 28(2): 174-182. -