INFLUENCE OF ATMOSPHERIC STRATIFICATION AND AIR-SEA INTERACTION ON SEA SURFACE WIND PROFILE
-
摘要: 风速剖面是各类工程结构抗风设计的关键参数。为了准确估算近海各类工程建筑结构承受的风荷载作用,通过在对数风剖面中引入大气稳定度函数和拖曳系数来刻画大气层结和海气交换作用对近海风速剖面的影响并建立相应的模型,最后利用强台风“黑格比”(0814号)的实测数据对模型进行了验证。研究结果表明:大气层结和海气交换作用对台风“黑格比”风速剖面有一定的影响,考虑大气层结和海气交换作用的风速剖面较对数剖面更能准确描述台风过程的风速剖面特征。Abstract: Wind velocity profile is a key parameter in the wind resistance design of engineering structures.In order to accurately estimate the wind load of onshore and offshore engineering infrastructural structures, this study investigates the influence of atmospheric stratification and air-seainteraction on wind profile byintroducing the atmospheric stability function and the drag coefficient into logarithmic wind profile, and an offshore wind speed profile model is proposed. The data of Typhoon Hagupit (0814) is used to validate theproposed wind speed profile model. The results show that atmospheric stratification and air-sea interactionhave certain influence on the wind speed profile of Typhoon Hagupit. The proposed wind speed profile model is more accurate than traditional logarithmic models in describing typhoon process.
-
Key words:
- wind profile /
- typhoon /
- atmospheric stratification /
- air-sea interaction /
- drag coeffcient
-
表 1 大气层结分类
大气层结状况 奥布霍夫长度/m 样本量 稳定(S) 0 ≤ L ≤ 500 69 中性层结(N) | L | ≥ 500 54 不稳定(U) -500 ≤ L ≤ 0 28 表 2 样本参数平均值
大气层结状况 稳定度参数L/m 平均风速U/(m/s) 摩擦速度/(m/s) 稳定层结 10 ≤ L ≤ 500 195.54 12.56 0.61 中性层结 L ≥ 500 1 035.76 14.00 0.63 L ≤ -500 -885.74 15.81 0.76 不稳定层结 -500 ≤ L ≤ -50 -199.23 13.04 0.82 -
[1] SHEPPARD P A, TRIBBLE D T, GARRATT J R. Studies of turbulence in the surface layer over water (Lough Neagh). Part Ⅰ. Instrumentation, programme, profiles[J]. Q J R Meteor Soc, 1972, 98(417): 627-641 [2] GARRATT J R. Studies of turbulence in the surface layer over water (Lough Neagh). Part Ⅱ. Production and dissipation of velocity and temperature fluctuations[J]. Q J R Meteor Soc, 1972, 98(417): 642-657. [3] 胡波, 俞燎霓, 滕代高.浙江海岛台风和冬季大风阵风特征的对比分析[J].热带气象学报, 2019, 35(1):25-36. [4] 毕雪岩, 刘烽, 吴兑.几种大气稳定度分类标准计算方法的比较分析[J].热带气象学报, 2005, 21(4): 402-409. [5] MONIN A S. The structure of atmospheric turbulence[J]. Theory of Probability and its Applications, 1958(3): 266-296. [6] DAVENPORT A G. Rationale for determining design wind velocities[J]. Journal of Structural Division, 1960, 86(ST5): 39-68. [7] DEAVES D M, HARRIS R I. A mathematical model of the structure of strong winds[R]. Construction Industry Research and Information Association, London, 1978. [8] GRYNING S, BATCHVAROVA E, BRÜMMER B, et al. On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer[J]. Boundary-Layer Meteorology, 2007, 124(2): 251-268. [9] DYER A J. A review of flux-profile relationships[J]. Boundary-Layer Meteorology, 1974, 7(3): 363-372. [10] 杨秋彦, 苗峻峰, 王语卉.边界层参数化对海南岛海风环流结构模拟的影响[J].热带气象学报, 2019, 35(2):234-252. [11] 潘卫华, 林毅.近10年台湾海峡海面风场的时空特征变化动态分析[J].热带气象学报, 2019, 35(3):296-303. [12] SAKAGAMI Y, SANTOS P A, HAAS R, et al. Logarithmic wind profile: a stability wind shear term[J]. Eprint arXiv, 2014:1-14. [13] IRWIN J S. A theoretical variation of the wind profile power-law exponent as a function of surface roughness and stability[J]. Atmos Environ, 1979, 13(1): 191-194. [14] 吴息, 白龙, 崔方, 等.海面与海岸陆面风速廓线特征[J].大气科学学报, 2014, 37(2): 138-145. [15] 张子范, 李家春.风浪发展对海面阻力系数的影响[J].中国科学(A辑), 1998(1): 53-61. [16] GARRATT J R. Review of drag coefficients over oceans and continents[J]. Mon Wea Rev, 1977, 105(7): 915-929. [17] POND S, PHELPS G T, PAQUIN J E, et al. Measurements of the turbulent fluxes of momentum, moisture and sensible heat over the ocean[J]. J Atmos Sci, 1971, 28(6): 901-917. [18] CHARNOCK H. Wind stress on a water surface[J]. Q J R Meteor Soc, 1955, 81(350): 639-640. [19] POWELL M D, VICKERY P J, REINHOLD T A. Reduced drag coefficient for high wind speeds in tropical cyclones[J]. Nature, 2003, 422(6 929): 279-283. [20] 洪凯, 纪蔓梓.基于不同重现期的南沙港区台风灾害风险评估[J].热带气象学报, 2019, 35(5):604-613 [21] ZENG Z, WANG Y, DUAN Y, et al. On sea surface roughness parameterization and its effect on tropical cyclone structure and intensity [J]. Adv Atmos Sci, 2010, 27(2): 337-355. [22] 纪文君.海面阻力系数的流体力学研究[J].海洋技术, 2002, 21(2): 17-20. [23] TAGESSON T. Turbulent transport in the atmospheric surface layer[R]. SKB report TR-12-05. 2012. [24] LI L, XIAO Y, KAREEM A, et al. Modeling typhoon wind power spectra near sea surface based on measurements in the South China sea[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 104-106:565-576. [25] 赵鸣.大气边界层动力学[M].北京:高等教育出版社, 2006.